These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 7819224)
1. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds. François JC; Hélène C Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224 [TBL] [Abstract][Full Text] [Related]
2. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives. François JC; Hélène C Bioconjug Chem; 1999; 10(3):439-46. PubMed ID: 10346876 [TBL] [Abstract][Full Text] [Related]
3. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Takahashi S; Sugimoto N Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181 [TBL] [Abstract][Full Text] [Related]
4. Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides. François JC; Thuong NT; Hélène C Nucleic Acids Res; 1994 Sep; 22(19):3943-50. PubMed ID: 7937117 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA. Cubero E; Luque FJ; Orozco M Biophys J; 2006 Feb; 90(3):1000-8. PubMed ID: 16287814 [TBL] [Abstract][Full Text] [Related]
6. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts. Millen AL; Churchill CD; Manderville RA; Wetmore SD J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889 [TBL] [Abstract][Full Text] [Related]
7. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties. Kandimalla ER; Agrawal S Gene; 1994 Nov; 149(1):115-21. PubMed ID: 7525410 [TBL] [Abstract][Full Text] [Related]
8. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related]
9. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies. Kandimalla ER; Agrawal S Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484 [TBL] [Abstract][Full Text] [Related]
10. Polypurine reverse-Hoogsteen (PPRH) oligonucleotides can form triplexes with their target sequences even under conditions where they fold into G-quadruplexes. Solé A; Delagoutte E; Ciudad CJ; Noé V; Alberti P Sci Rep; 2017 Jan; 7():39898. PubMed ID: 28067256 [TBL] [Abstract][Full Text] [Related]
11. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Kandimalla ER; Agrawal S Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions. Plum GE; Breslauer KJ J Mol Biol; 1995 May; 248(3):679-95. PubMed ID: 7752233 [TBL] [Abstract][Full Text] [Related]
13. [Artificial nucleases: specific cleavage of the double helix of DNA by oligonucleotides linked to copper-phenanthroline complex]. François JC; Saison-Behmoaras T; Chassignol M; Thuong NT; Hélène C C R Acad Sci III; 1988; 307(20):849-54. PubMed ID: 2854494 [TBL] [Abstract][Full Text] [Related]
14. A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing. Liu K; Miles HT; Frazier J; Sasisekharan V Biochemistry; 1993 Nov; 32(44):11802-9. PubMed ID: 8218251 [TBL] [Abstract][Full Text] [Related]
15. Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides. Perrouault L; Asseline U; Rivalle C; Thuong NT; Bisagni E; Giovannangeli C; Le Doan T; Hélène C Nature; 1990 Mar; 344(6264):358-60. PubMed ID: 2156170 [TBL] [Abstract][Full Text] [Related]
16. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases. Ornstein RL; Fresco JR Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic characterization of a triple-helical three-way junction containing a Hoogsteen branch point. Hüsler PL; Klump HH Arch Biochem Biophys; 1995 Sep; 322(1):149-66. PubMed ID: 7574670 [TBL] [Abstract][Full Text] [Related]
18. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045 [TBL] [Abstract][Full Text] [Related]
19. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Praseuth D; Guieysse AL; Hélène C Biochim Biophys Acta; 1999 Dec; 1489(1):181-206. PubMed ID: 10807007 [TBL] [Abstract][Full Text] [Related]
20. A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair. El Amri C; Mauffret O; Monnot M; Tevanian G; Lescot E; Porumb H; Fermandjian S J Mol Biol; 1999 Nov; 294(2):427-42. PubMed ID: 10610769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]