These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 7819232)
1. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue. Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232 [TBL] [Abstract][Full Text] [Related]
2. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
3. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
4. Aspartate aminotransferase with the pyridoxal-5'-phosphate-binding lysine residue replaced by histidine retains partial catalytic competence. Ziak M; Jaussi R; Gehring H; Christen P Eur J Biochem; 1990 Jan; 187(2):329-33. PubMed ID: 2105217 [TBL] [Abstract][Full Text] [Related]
5. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
6. The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase. Yano T; Kuramitsu S; Tanase S; Morino Y; Hiromi K; Kagamiyama H J Biol Chem; 1991 Apr; 266(10):6079-85. PubMed ID: 2007566 [TBL] [Abstract][Full Text] [Related]
7. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529 [TBL] [Abstract][Full Text] [Related]
10. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step. Islam MM; Goto M; Miyahara I; Ikushiro H; Hirotsu K; Hayashi H Biochemistry; 2005 Jun; 44(23):8218-29. PubMed ID: 15938611 [TBL] [Abstract][Full Text] [Related]
11. Tyr225 in aspartate aminotransferase: contribution of the hydrogen bond between Tyr225 and coenzyme to the catalytic reaction. Inoue K; Kuramitsu S; Okamoto A; Hirotsu K; Higuchi T; Morino Y; Kagamiyama H J Biochem; 1991 Apr; 109(4):570-6. PubMed ID: 1869510 [TBL] [Abstract][Full Text] [Related]
12. Examining the structural and chemical flexibility of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with unnatural amino acids. Gloss LM; Kirsch JF Biochemistry; 1995 Sep; 34(38):12323-32. PubMed ID: 7547975 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and equilibria for the reactions of coenzymes with wild type and the Y70F mutant of Escherichia coli aspartate aminotransferase. Toney MD; Kirsch JF Biochemistry; 1991 Jul; 30(30):7461-6. PubMed ID: 1677270 [TBL] [Abstract][Full Text] [Related]
14. The stereospecific labilization of the C-4' pro-S hydrogen of pyridoxamine 5'-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase. Kochhar S; Finlayson WL; Kirsch JF; Christen P J Biol Chem; 1987 Aug; 262(24):11446-8. PubMed ID: 3114245 [TBL] [Abstract][Full Text] [Related]
15. Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme. Haruyama K; Nakai T; Miyahara I; Hirotsu K; Mizuguchi H; Hayashi H; Kagamiyama H Biochemistry; 2001 Apr; 40(15):4633-44. PubMed ID: 11294630 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. Kirsch JF; Eichele G; Ford GC; Vincent MG; Jansonius JN; Gehring H; Christen P J Mol Biol; 1984 Apr; 174(3):497-525. PubMed ID: 6143829 [TBL] [Abstract][Full Text] [Related]
17. Substitution of an arginyl residue for the active site lysyl residue (Lys258) of aspartate aminotransferase. Kuramitsu S; Inoue Y; Tanase S; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1987 Jul; 146(2):416-21. PubMed ID: 3113421 [TBL] [Abstract][Full Text] [Related]
18. X-ray crystallographic study of pyridoxamine 5'-phosphate-type aspartate aminotransferases from Escherichia coli in three forms. Miyahara I; Hirotsu K; Hayashi H; Kagamiyama H J Biochem; 1994 Nov; 116(5):1001-12. PubMed ID: 7896726 [TBL] [Abstract][Full Text] [Related]
19. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes. Pascarella S; Bossa F Protein Sci; 1994 Apr; 3(4):701-5. PubMed ID: 8003988 [TBL] [Abstract][Full Text] [Related]
20. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]