These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7819252)
1. Interaction of tryptophan-182 with the retinal 9-methyl group in the L intermediate of bacteriorhodopsin. Yamazaki Y; Sasaki J; Hatanaka M; Kandori H; Maeda A; Needleman R; Shinada T; Yoshihara K; Brown LS; Lanyi JK Biochemistry; 1995 Jan; 34(2):577-82. PubMed ID: 7819252 [TBL] [Abstract][Full Text] [Related]
2. Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. Maeda A; Sasaki J; Yamazaki Y; Needleman R; Lanyi JK Biochemistry; 1994 Feb; 33(7):1713-7. PubMed ID: 8110773 [TBL] [Abstract][Full Text] [Related]
3. Tryptophan perturbation in the L intermediate of bacteriorhodopsin: fourier transform infrared analysis with indole-15N shift. Maeda A; Sasaki J; Ohkita YJ; Simpson M; Herzfeld J Biochemistry; 1992 Dec; 31(50):12543-5. PubMed ID: 1472491 [TBL] [Abstract][Full Text] [Related]
4. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle. Maeda A; Tomson FL; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Mar; 42(9):2535-41. PubMed ID: 12614147 [TBL] [Abstract][Full Text] [Related]
5. Fourier transform infrared study of the N intermediate of bacteriorhodopsin. Pfefferlé JM; Maeda A; Sasaki J; Yoshizawa T Biochemistry; 1991 Jul; 30(26):6548-56. PubMed ID: 2054353 [TBL] [Abstract][Full Text] [Related]
6. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin. Yamazaki Y; Kandori H; Needleman R; Lanyi JK; Maeda A Biochemistry; 1998 Feb; 37(6):1559-64. PubMed ID: 9484226 [TBL] [Abstract][Full Text] [Related]
9. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
10. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. Maeda A; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1992 Jan; 31(2):462-7. PubMed ID: 1731905 [TBL] [Abstract][Full Text] [Related]
11. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy. Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J Biochemistry; 1999 Jul; 38(30):9676-83. PubMed ID: 10423246 [TBL] [Abstract][Full Text] [Related]
12. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885 [TBL] [Abstract][Full Text] [Related]
13. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175 [TBL] [Abstract][Full Text] [Related]
14. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy. Weidlich O; Friedman N; Sheves M; Siebert F Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939 [TBL] [Abstract][Full Text] [Related]
15. Relocation of internal bound water in bacteriorhodopsin during the photoreaction of M at low temperatures: an FTIR study. Maeda A; Tomson FL; Gennis RB; Kandori H; Ebrey TG; Balashov SP Biochemistry; 2000 Aug; 39(33):10154-62. PubMed ID: 10956004 [TBL] [Abstract][Full Text] [Related]
16. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Rothschild KJ; Roepe P; Lugtenburg J; Pardoen JA Biochemistry; 1984 Dec; 23(25):6103-9. PubMed ID: 6525348 [TBL] [Abstract][Full Text] [Related]
17. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal. Hashimoto S; Obata K; Takeuchi H; Needleman R; Lanyi JK Biochemistry; 1997 Sep; 36(39):11583-90. PubMed ID: 9305948 [TBL] [Abstract][Full Text] [Related]
18. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Gerwert K; Hess B; Soppa J; Oesterhelt D Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4943-7. PubMed ID: 2544884 [TBL] [Abstract][Full Text] [Related]
19. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that ASP-96 deprotonates during the M----N transition. Bousché O; Braiman M; He YW; Marti T; Khorana HG; Rothschild KJ J Biol Chem; 1991 Jun; 266(17):11063-7. PubMed ID: 2040618 [TBL] [Abstract][Full Text] [Related]
20. Water as a cofactor in the unidirectional light-driven proton transfer steps in bacteriorhodopsin. Maeda A; Morgan JE; Gennis RB; Ebrey TG Photochem Photobiol; 2006; 82(6):1398-405. PubMed ID: 16634652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]