These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7819252)
21. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Weidlich O; Schalt B; Friedman N; Sheves M; Lanyi JK; Brown LS; Siebert F Biochemistry; 1996 Aug; 35(33):10807-14. PubMed ID: 8718872 [TBL] [Abstract][Full Text] [Related]
22. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [TBL] [Abstract][Full Text] [Related]
23. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932 [TBL] [Abstract][Full Text] [Related]
24. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398 [TBL] [Abstract][Full Text] [Related]
26. Interaction of internal water molecules with the schiff base in the L intermediate of the bacteriorhodopsin photocycle. Maeda A; Balashov SP; Lugtenburg J; Verhoeven MA; Herzfeld J; Belenky M; Gennis RB; Tomson FL; Ebrey TG Biochemistry; 2002 Mar; 41(11):3803-9. PubMed ID: 11888299 [TBL] [Abstract][Full Text] [Related]
28. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin. Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253 [TBL] [Abstract][Full Text] [Related]
29. Complete identification of C = O stretching vibrational bands of protonated aspartic acid residues in the difference infrared spectra of M and N intermediates versus bacteriorhodopsin. Sasaki J; Lanyi JK; Needleman R; Yoshizawa T; Maeda A Biochemistry; 1994 Mar; 33(11):3178-84. PubMed ID: 8136352 [TBL] [Abstract][Full Text] [Related]
30. Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy. Siebert F; Mäntele W Eur J Biochem; 1983 Feb; 130(3):565-73. PubMed ID: 6825710 [TBL] [Abstract][Full Text] [Related]
31. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866 [TBL] [Abstract][Full Text] [Related]
32. Replacement effects of neutral amino acid residues of different molecular volumes in the retinal binding cavity of bacteriorhodopsin on the dynamics of its primary process. Logunov SL; el-Sayed MA; Lanyi JK Biophys J; 1996 Jun; 70(6):2875-81. PubMed ID: 8744325 [TBL] [Abstract][Full Text] [Related]
33. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559 [TBL] [Abstract][Full Text] [Related]
34. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A; Herzfeld J; Belenky M; Needleman R; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Dec; 42(48):14122-9. PubMed ID: 14640679 [TBL] [Abstract][Full Text] [Related]
35. Localization and orientation of functional water molecules in bacteriorhodopsin as revealed by polarized Fourier transform infrared spectroscopy. Hatanaka M; Kandori H; Maeda A Biophys J; 1997 Aug; 73(2):1001-6. PubMed ID: 9251817 [TBL] [Abstract][Full Text] [Related]
36. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928 [TBL] [Abstract][Full Text] [Related]
37. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore. Rothschild KJ; He YW; Mogi T; Marti T; Stern LJ; Khorana HG Biochemistry; 1990 Jun; 29(25):5954-60. PubMed ID: 2166567 [TBL] [Abstract][Full Text] [Related]
38. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Zscherp C; Schlesinger R; Tittor J; Oesterhelt D; Heberle J Proc Natl Acad Sci U S A; 1999 May; 96(10):5498-503. PubMed ID: 10318912 [TBL] [Abstract][Full Text] [Related]
39. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
40. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Herbst J; Heyne K; Diller R Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]