These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7819391)

  • 1. [Interaction of native 5'-ATP with rat liver cell membranes and adipose tissue].
    Egutkin GG
    Biokhimiia; 1994 Oct; 59(10):1497-502. PubMed ID: 7819391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state binding of adenine nucleotides ATP, ADP and AMP to rat liver and adipose plasma membranes.
    Yegutkin GG; Burnstock G
    J Recept Signal Transduct Res; 1999; 19(1-4):437-48. PubMed ID: 10071776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of [3H]AMP binding to rat adipose plasma membranes and its substrate specificity.
    Yegutkin GG
    Membr Cell Biol; 1997; 11(4):441-7. PubMed ID: 9553932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state binding of [3H]ATP to rat liver plasma membranes and competition by various purinergic agonists and antagonists.
    Yegutkin GG; Burnstock G
    Biochim Biophys Acta; 1998 Aug; 1373(1):227-36. PubMed ID: 9733971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of some purinergic agents on ecto-ATPase activity and pattern of stepwise ATP hydrolysis in rat liver plasma membranes.
    Yegutkin GG; Burnstock G
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):234-44. PubMed ID: 10825445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Interaction of [3H]AMP with liver cells and their plasma membranes].
    Iakubovskiĭ SM; Fil'chenkov GN; NAumenko VK; Lastovskaia TG; Gatsko GG
    Biokhimiia; 1991 Feb; 56(2):369-73. PubMed ID: 1873349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies.
    Wakagi T; Ohta T
    J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of an extracellular ATP-binding site in NCAM: functional implications of nucleotide binding.
    Dzhandzhugazyan K; Bock E
    Biochemistry; 1997 Dec; 36(49):15381-95. PubMed ID: 9398268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E-NTPDases and ecto-5'-nucleotidase expression profile in rat heart left ventricle and the extracellular nucleotide hydrolysis by their nerve terminal endings.
    Rücker B; Almeida ME; Libermann TA; Zerbini LF; Wink MR; Sarkis JJ
    Life Sci; 2008 Feb; 82(9-10):477-86. PubMed ID: 18201730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to Hg2+ and Pb2+ changes NTPDase and ecto-5'-nucleotidase activities in central nervous system of zebrafish (Danio rerio).
    Senger MR; Rico EP; de Bem Arizi M; Frazzon AP; Dias RD; Bogo MR; Bonan CD
    Toxicology; 2006 Sep; 226(2-3):229-37. PubMed ID: 16930798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of enzymatic hydrolysis of ATP in human and rat blood serum.
    Yegutkin GG
    Biochemistry (Mosc); 1997 Jun; 62(6):619-22. PubMed ID: 9284543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotides regulate ADP-ribosylation of membrane-bound actin and actin-binding to membranes.
    Schroeder P; Just I; Aktories K
    Eur J Cell Biol; 1994 Feb; 63(1):3-9. PubMed ID: 8005102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of K(ATP) channel modulators in rat cardiac membranes.
    Löffler-Walz C; Quast U
    Br J Pharmacol; 1998 Apr; 123(7):1395-402. PubMed ID: 9579735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP and ADP hydrolysis in the kidney and liver of fish, chickens and rats.
    Vieira VL; Morsch VM; Lermen CL; da Silva AC; Tabaldi LA; Schetinger MR
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Dec; 139(4):713-20. PubMed ID: 15581803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase.
    Ahnert F; Schmid R; Altendorf K; Greie JC
    Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of P2-nucleotide receptor agonist-mediated endothelium-independent relaxation on ectonucleotidase activity and A2A-receptors in rat portal vein.
    Guibert C; Loirand G; Vigne P; Savineau JP; Pacaud P
    Br J Pharmacol; 1998 Apr; 123(8):1732-40. PubMed ID: 9605582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone.
    Russell R; Jordan R; McMacken R
    Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence.
    Berrêdo-Pinho M; Peres-Sampaio CE; Chrispim PP; Belmont-Firpo R; Lemos AP; Martiny A; Vannier-Santos MA; Meyer-Fernandes JR
    Arch Biochem Biophys; 2001 Jul; 391(1):16-24. PubMed ID: 11414680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.