These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 7819398)
21. Development of a liquid chromatography-based screening methodology for proteolytic enzyme activity. Schebb NH; Vielhaber T; Jousset A; Karst U J Chromatogr A; 2009 May; 1216(20):4407-15. PubMed ID: 19349051 [TBL] [Abstract][Full Text] [Related]
22. Spectrophotometric assay for protease activity in ionic liquids using chromogenic substrates. Nakashima K; Maruyama T; Kamiya N; Goto M Anal Biochem; 2008 Mar; 374(2):285-90. PubMed ID: 18078800 [TBL] [Abstract][Full Text] [Related]
23. Proteases--structures, mechanism and inhibitors. Powers JC; Odake S; Oleksyszyn J; Hori H; Ueda T; Boduszek B; Kam C Agents Actions Suppl; 1993; 42():3-18. PubMed ID: 8356929 [TBL] [Abstract][Full Text] [Related]
24. Predicted three-dimensional structural models of venom serine protease inhibitors and their interactions with trypsin and chymotrypsin. Azim MK; Grossmann JG; Zaidi ZH J Nat Toxins; 1999 Oct; 8(3):363-84. PubMed ID: 10591040 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of proteolysis and other posttranslational modifications with substrate-targeted inhibitors. Kodadek T Biopolymers; 2002; 66(2):134-40. PubMed ID: 12325163 [TBL] [Abstract][Full Text] [Related]
26. Characterization of a thrombin-like serine protease, Kangshuanmei, isolated from the venom of a Chinese snake, Agkistrodon halys brevicaudus stejneger. Zhang S; Ma B; Sakai J; Shiono H; Matsui T; Sugie I; Okada T J Nat Toxins; 2001 Aug; 10(3):221-38. PubMed ID: 11491462 [TBL] [Abstract][Full Text] [Related]
27. Inhibitors can activate proteases to catalyze the synthesis and hydrolysis of peptides. Schechter I; Ziv E Biochemistry; 2006 Dec; 45(49):14567-72. PubMed ID: 17144650 [TBL] [Abstract][Full Text] [Related]
28. Fibrinogenolytic proteases isolated from the snake venom of Taiwan habu: serine proteases with kallikrein-like and angiotensin-degrading activities. Hung CC; Chiou SH Biochem Biophys Res Commun; 2001 Mar; 281(4):1012-8. PubMed ID: 11237764 [TBL] [Abstract][Full Text] [Related]
29. Identification and monitoring of protease activity in recombinant Saccharomyces cerevisiae. Gimenez JA; Monkovic DD; Dekleva ML Biotechnol Bioeng; 2000 Jan; 67(2):245-51. PubMed ID: 10592523 [TBL] [Abstract][Full Text] [Related]
30. Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. De-Simone SG; Correa-Netto C; Antunes OA; De-Alencastro RB; Silva FP J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 822(1-2):1-9. PubMed ID: 15994137 [TBL] [Abstract][Full Text] [Related]
31. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Salazar AM; Aguilar I; Guerrero B; Girón ME; Lucena S; Sánchez EE; Rodríguez-Acosta A Blood Coagul Fibrinolysis; 2008 Sep; 19(6):525-30. PubMed ID: 18685436 [TBL] [Abstract][Full Text] [Related]
33. Substrates and inhibitors of human T-cell leukemia virus type I protease. Ding YS; Rich DH; Ikeda RA Biochemistry; 1998 Dec; 37(50):17514-8. PubMed ID: 9860866 [TBL] [Abstract][Full Text] [Related]
34. Bait region cleavage and complex formation of human alpha2M with a Porphyromonas gingivalis W50 protease is not accompanied by enzyme inhibition. Rangarajan M; Scragg MA; Curtis MA Biol Chem; 2000 Jan; 381(1):57-65. PubMed ID: 10722051 [TBL] [Abstract][Full Text] [Related]
36. Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Oliveira MG; De Simone SG; Xavier LP; Guedes RN Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):369-80. PubMed ID: 15694584 [TBL] [Abstract][Full Text] [Related]
37. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Overall CM; Tam EM; Kappelhoff R; Connor A; Ewart T; Morrison CJ; Puente X; López-Otín C; Seth A Biol Chem; 2004 Jun; 385(6):493-504. PubMed ID: 15255181 [TBL] [Abstract][Full Text] [Related]
38. Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Mizote A; Okamoto S; Iwao Y Dev Biol; 1999 Apr; 208(1):79-92. PubMed ID: 10075843 [TBL] [Abstract][Full Text] [Related]
39. Structural models of the snake venom factor V activators from Daboia russelli and Daboia lebetina. Segers K; Rosing J; Nicolaes GA Proteins; 2006 Sep; 64(4):968-84. PubMed ID: 16807918 [TBL] [Abstract][Full Text] [Related]
40. [Synthesis of new chromogenic substrates for aspartyl proteases]. Litvinova OV; Balandina GN; Stepanov VM Bioorg Khim; 1998 Jan; 24(1):10-5. PubMed ID: 9551195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]