BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7819492)

  • 1. Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine.
    Kozlov MM; Leikin S; Rand RP
    Biophys J; 1994 Oct; 67(4):1603-11. PubMed ID: 7819492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes.
    Gawrisch K; Parsegian VA; Hajduk DA; Tate MW; Graner SM; Fuller NL; Rand RP
    Biochemistry; 1992 Mar; 31(11):2856-64. PubMed ID: 1550812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids.
    Rand RP; Fuller NL
    Biophys J; 1994 Jun; 66(6):2127-38. PubMed ID: 8075346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine.
    McIntosh TJ
    Chem Phys Lipids; 1996 Jul; 81(2):117-31. PubMed ID: 8810046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: a real-time X-ray diffraction study using synchrotron radiation.
    Caffrey M
    Biochemistry; 1985 Aug; 24(18):4826-44. PubMed ID: 4074661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotropic properties of dioleoylphosphatidylethanolamine in aqueous dimethyl sulfoxide solutions.
    Yu ZW; Williams WP; Quinn PJ
    Arch Biochem Biophys; 1996 Aug; 332(1):187-95. PubMed ID: 8806725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Sot J; Aranda FJ; Collado MI; Goñi FM; Alonso A
    Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Order and dynamics in the lamellar L alpha and in the hexagonal HII phase. Dioleoylphosphatidylethanolamine studied with angle-resolved fluorescence depolarization.
    van Langen H; Schrama CA; van Ginkel G; Ranke G; Levine YK
    Biophys J; 1989 May; 55(5):937-47. PubMed ID: 2720082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases.
    Chen Z; Rand RP
    Biophys J; 1998 Feb; 74(2 Pt 1):944-52. PubMed ID: 9533705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines.
    Epand RM; Fuller N; Rand RP
    Biophys J; 1996 Oct; 71(4):1806-10. PubMed ID: 8889157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction.
    Rappolt M; Hickel A; Bringezu F; Lohner K
    Biophys J; 2003 May; 84(5):3111-22. PubMed ID: 12719241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers.
    Langner M; Hui SW
    Biochim Biophys Acta; 1999 Jan; 1415(2):323-30. PubMed ID: 9889390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inverse hexagonal - inverse ribbon - lamellar gel phase transition sequence in low hydration DOPC:DOPE phospholipid mixtures.
    Kent B; Garvey CJ; Cookson D; Bryant G
    Chem Phys Lipids; 2009 Jan; 157(1):56-60. PubMed ID: 19026619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New phases of phospholipids and implications to the membrane fusion problem.
    Yang L; Ding L; Huang HW
    Biochemistry; 2003 Jun; 42(22):6631-5. PubMed ID: 12779317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae.
    Cevc G
    Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barotropic phase transition between the lamellar liquid crystal phase and the inverted hexagonal phase of dioleoylphosphatidylethanolamine.
    Sueyoshi R; Tada K; Goto M; Tamai N; Matsuki H; Kaneshina S
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):85-8. PubMed ID: 16697154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress.
    Rand RP; Fuller NL; Gruner SM; Parsegian VA
    Biochemistry; 1990 Jan; 29(1):76-87. PubMed ID: 2322550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DOPC-DOPE composition dependent Lα-HII thermotropic phase transition: SAXD study.
    Klacsová M; Bóta A; Balgavý P
    Chem Phys Lipids; 2016 Jun; 198():46-50. PubMed ID: 27179406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the lamellar-inverse hexagonal phase transition determined by time-resolved X-ray diffraction.
    Tate MW; Shyamsunder E; Gruner SM; D'Amico KL
    Biochemistry; 1992 Feb; 31(4):1081-92. PubMed ID: 1734957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular view of hexagonal phase formation in phospholipid membranes.
    Marrink SJ; Mark AE
    Biophys J; 2004 Dec; 87(6):3894-900. PubMed ID: 15377528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.