These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 7819606)

  • 61. Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus).
    Woods JL; Harland DP; Vernon JA; Krsinic GL; Walls RJ
    J Morphol; 2011 Jan; 272(1):34-49. PubMed ID: 21061275
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antler transformation is advanced by inversion of antlerogenic periosteum implants in sika deer (Cervus nippon).
    Gao X; Yang F; Zhao H; Wang W; Li C
    Anat Rec (Hoboken); 2010 Oct; 293(10):1787-96. PubMed ID: 20730865
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red deer (Cervus elaphus).
    Tao D; Zhao J; Deng G; Jiao J
    J Exp Zool A Ecol Genet Physiol; 2015 Dec; 323(10):696-703. PubMed ID: 26351085
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The distribution of the growth factors FGF-2 and VEGF, and their receptors, in growing red deer antler.
    Lai AK; Hou WL; Verdon DJ; Nicholson LF; Barling PM
    Tissue Cell; 2007 Feb; 39(1):35-46. PubMed ID: 17316726
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals?
    Price JS; Allen S; Faucheux C; Althnaian T; Mount JG
    J Anat; 2005 Nov; 207(5):603-18. PubMed ID: 16313394
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tissue differentiation and correlated changes in enzymatic activities during primary antler development in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Althoff J; Clemen G
    Anat Rec; 1995 Dec; 243(4):413-20. PubMed ID: 8597287
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ability to culture dermal papilla cells from red deer (Cervus elaphus) hair follicles with differing hormonal responses in vivo offers a new model for studying the control of hair follicle biology.
    Thornton MJ; Kato S; Hibberts NA; Brinklow BR; Loudon AS; Randall VA
    J Exp Zool; 1996 Aug; 275(6):452-8. PubMed ID: 8795289
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The macroscopic and microscopic structure of double-head antlers and pedicle bone of cervidae (Mammalia, Artiodactyla).
    Kierdorf U; Kierdorf H; Schultz M
    Ann Anat; 1994 Jun; 176(3):251-7. PubMed ID: 8059969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrastructural changes associated with the mineralization of deer antler cartilage.
    Newbrey JW; Banks WJ
    Am J Anat; 1983 Jan; 166(1):1-17. PubMed ID: 6837477
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mineral deficiencies in tule elk, Owens Valley, California.
    Johnson HE; Bleich VC; Krausman PR
    J Wildl Dis; 2007 Jan; 43(1):61-74. PubMed ID: 17347394
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Deer velvet antler: some unanswered questions on toxicology.
    Dalefield RR; Oehme FW
    Vet Hum Toxicol; 1999 Feb; 41(1):39-41. PubMed ID: 9949486
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Non-destructive characterization of deer (Cervus Elaphus) antlers by X-ray microtomography coupled with image analysis.
    Léonard A; Guiot LP; Pirard JP; Crine M; Balligand M; Blacher S
    J Microsc; 2007 Mar; 225(Pt 3):258-63. PubMed ID: 17371448
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Low heterozygosity at microsatellite markers in Iberian red deer with small antlers.
    Pérez-González J; Carranza J; Torres-Porras J; Fernández-García JL
    J Hered; 2010; 101(5):553-61. PubMed ID: 20478822
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RNA sequencing-based identification of microRNAs in the antler cartilage of Gansu red deer (
    Chen Y; Zhang Z; Zhang J; Chen X; Guo Y; Li C
    PeerJ; 2022; 10():e13947. PubMed ID: 36164600
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of analgesic techniques for antler removal in halothane-anaesthetized red deer (Cervus elaphus): electroencephalographic responses.
    Johnson CB; Wilson PR; Woodbury MR; Caulkett NA
    Vet Anaesth Analg; 2005 Mar; 32(2):61-71. PubMed ID: 15762911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Induction of deer antlers by transplanted periosteum. I. Graft size and shape.
    Goss RJ; Powel RS
    J Exp Zool; 1985 Sep; 235(3):359-73. PubMed ID: 4056697
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Expression of PTHrP and the PTH/PTHrP receptor in growing red deer antler.
    Barling PM; Liu H; Matich J; Mount J; Ka Wai Lai A; Ma L; Basford Nicholson LF
    Cell Biol Int; 2004; 28(10):661-73. PubMed ID: 15516324
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of insulin-like growth factor 1 and testosterone on the proliferation of antlerogenic cells in vitro.
    Li C; Littlejohn RP; Suttie JM
    J Exp Zool; 1999 Jun; 284(1):82-90. PubMed ID: 10368936
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Red deer bone and antler collagen are not isotopically equivalent in carbon and nitrogen.
    Stevens RE; O'Connell TC
    Rapid Commun Mass Spectrom; 2016 Sep; 30(17):1969-84. PubMed ID: 27501431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Insulin-like growth factor 1 (IGF-1) antler-stimulating hormone?
    Suttie JM; Gluckman PD; Butler JH; Fennessy PF; Corson ID; Laas FJ
    Endocrinology; 1985 Feb; 116(2):846-8. PubMed ID: 3881250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.