These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7820560)

  • 21. [Molecular mechanisms for memory formation].
    Manabe T
    Brain Nerve; 2008 Jul; 60(7):707-15. PubMed ID: 18646610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complementary nature of long-term depression and potentiation revealed by dual component excitatory postsynaptic potentials in hippocampal slices from young rats.
    Xiao MY; Karpefors M; Niu YP; Wigström H
    Neuroscience; 1995 Oct; 68(3):625-35. PubMed ID: 8577363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of hippocampal synaptic plasticity by estrogen and progesterone.
    Foy MR; Baudry M; Akopian GK; Thompson RF
    Vitam Horm; 2010; 82():219-39. PubMed ID: 20472141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory.
    Chan CS; Weeber EJ; Zong L; Fuchs E; Sweatt JD; Davis RL
    J Neurosci; 2006 Jan; 26(1):223-32. PubMed ID: 16399691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential roles of mGluR1 and inhibitory synaptic transmission in NMDA-independent long-term potentiation in the spinal trigeminal interpolaris.
    Kim SY; Weon H; Youn DH
    Life Sci; 2016 Jan; 144():54-60. PubMed ID: 26620765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of action potential backpropagation during postnatal development of the hippocampus.
    Meredith RM; Groen MR
    J Neurophysiol; 2010 Apr; 103(4):2313; author reply 2314. PubMed ID: 20386042
    [No Abstract]   [Full Text] [Related]  

  • 27. The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity.
    Manahan-Vaughan D; Braunewell KH
    Cereb Cortex; 2005 Nov; 15(11):1703-13. PubMed ID: 15703249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus.
    Bortolotto ZA; Fitzjohn SM; Collingridge GL
    Curr Opin Neurobiol; 1999 Jun; 9(3):299-304. PubMed ID: 10395580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning and memory, part II: molecular mechanisms of synaptic plasticity.
    Lombroso P; Ogren M
    J Am Acad Child Adolesc Psychiatry; 2009 Jan; 48(1):5-9. PubMed ID: 19096295
    [No Abstract]   [Full Text] [Related]  

  • 32. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.
    Wang T; Guan RL; Liu MC; Shen XF; Chen JY; Zhao MG; Luo WJ
    Mol Neurobiol; 2016 Aug; 53(6):3740-3752. PubMed ID: 26141123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AMPA receptor trafficking and synaptic plasticity.
    Malinow R; Malenka RC
    Annu Rev Neurosci; 2002; 25():103-26. PubMed ID: 12052905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMDARs in prefrontal cortex - Regulation of synaptic transmission and plasticity.
    Banks PJ; Bashir ZI
    Neuropharmacology; 2021 Jul; 192():108614. PubMed ID: 34022178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term synaptic plasticity in cerebellar stellate cells.
    Liu SJ; Lachamp P; Liu Y; Savtchouk I; Sun L
    Cerebellum; 2008; 7(4):559-62. PubMed ID: 18855095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory.
    Riedel G; Reymann KG
    Acta Physiol Scand; 1996 May; 157(1):1-19. PubMed ID: 8735650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ups and downs of synaptic plasticity: influences on this particular 'market'.
    O'Leary T; Wyllie DJ
    J Physiol; 2008 Dec; 586(24):5839-40. PubMed ID: 19074816
    [No Abstract]   [Full Text] [Related]  

  • 38. The birth (and adolescence) of LTP.
    Miles R; Poncer JC; Fricker D; Leinekugel X
    J Physiol; 2005 Oct; 568(Pt 1):1-2. PubMed ID: 16020452
    [No Abstract]   [Full Text] [Related]  

  • 39. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices.
    Rammes G; Hasenjäger A; Sroka-Saidi K; Deussing JM; Parsons CG
    Neuropharmacology; 2011 May; 60(6):982-90. PubMed ID: 21310164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.
    Tsien JZ; Huerta PT; Tonegawa S
    Cell; 1996 Dec; 87(7):1327-38. PubMed ID: 8980238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.