BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7820861)

  • 1. Microtubule associated protein MAP1A is an actin-binding and crosslinking protein.
    Pedrotti B; Colombo R; Islam K
    Cell Motil Cytoskeleton; 1994; 29(2):110-6. PubMed ID: 7820861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of microtubule associated protein MAP1B from bovine brain: MAP1B binds to microtubules but not to microfilaments.
    Pedrotti B; Islam K
    Cell Motil Cytoskeleton; 1995; 30(4):301-9. PubMed ID: 7796460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulphonate buffers affect the recovery of microtubule-associated proteins MAP1 and MAP2: evidence that MAP1A promotes microtubule assembly.
    Pedrotti B; Soffientini A; Islam K
    Cell Motil Cytoskeleton; 1993; 25(3):234-42. PubMed ID: 8221901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP1a associated light chain 3 increases microtubule stability by suppressing microtubule dynamics.
    Faller EM; Villeneuve TS; Brown DL
    Mol Cell Neurosci; 2009 May; 41(1):85-93. PubMed ID: 19233279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purified native microtubule associated protein MAP1A: kinetics of microtubule assembly and MAP1A/tubulin stoichiometry.
    Pedrotti B; Islam K
    Biochemistry; 1994 Oct; 33(41):12463-70. PubMed ID: 7918469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of talin with actin: sensitive modulation of filament crosslinking activity.
    Schmidt JM; Zhang J; Lee HS; Stromer MH; Robson RM
    Arch Biochem Biophys; 1999 Jun; 366(1):139-50. PubMed ID: 10334874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin.
    Huang S; Jin L; Du J; Li H; Zhao Q; Ou G; Ao G; Yuan M
    Plant J; 2007 Aug; 51(3):406-18. PubMed ID: 17559515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method.
    Wagner O; Zinke J; Dancker P; Grill W; Bereiter-Hahn J
    Biophys J; 1999 May; 76(5):2784-96. PubMed ID: 10233094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subpopulations of tau interact with microtubules and actin filaments in various cell types.
    Henríquez JP; Cross D; Vial C; Maccioni RB
    Cell Biochem Funct; 1995 Dec; 13(4):239-50. PubMed ID: 10232926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new protein factor that modulates both microtubule assembly and actin polymerization.
    Nishida E
    J Biochem; 1981 Apr; 89(4):1197-203. PubMed ID: 6894751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of a protein complex from the brain which reduces actin viscosity. I. Composition and various properties of the complex].
    VerkhovskiÄ­ AB; Surgucheva IG; Gel'fand VI
    Mol Biol (Mosk); 1986; 20(4):922-8. PubMed ID: 3762533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule-associated protein interactions with actin filaments: evidence for differential behavior of neuronal MAP-2 and tau in the presence of phosphatidyl-inositol.
    Yamauchi PS; Purich DL
    Biochem Biophys Res Commun; 1993 Feb; 190(3):710-5. PubMed ID: 8439322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of MAP1B heavy chain interaction with actin.
    Cueille N; Blanc CT; Popa-Nita S; Kasas S; Catsicas S; Dietler G; Riederer BM
    Brain Res Bull; 2007 Mar; 71(6):610-8. PubMed ID: 17292804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of dystrophin with cytoskeletal proteins: binding to talin and actin.
    Senter L; Luise M; Presotto C; Betto R; Teresi A; Ceoldo S; Salviati G
    Biochem Biophys Res Commun; 1993 Apr; 192(2):899-904. PubMed ID: 8484792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases.
    Miki H; Miura K; Takenawa T
    EMBO J; 1996 Oct; 15(19):5326-35. PubMed ID: 8895577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with alpha-actinin.
    Tseng Y; Fedorov E; McCaffery JM; Almo SC; Wirtz D
    J Mol Biol; 2001 Jul; 310(2):351-66. PubMed ID: 11428894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myofilament anchoring of protein kinase C-epsilon in cardiac myocytes.
    Huang X; Walker JW
    J Cell Sci; 2004 Apr; 117(Pt 10):1971-8. PubMed ID: 15039458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.