BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7820885)

  • 1. Mitomycin C-induced distortions of DNA at minor alkylation sites.
    Jollès B; Laigle A
    Chem Biol Interact; 1995 Mar; 94(3):215-24. PubMed ID: 7820885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of specific DNA sequences by mitomycin C for alkylation.
    Kumar S; Lipman R; Tomasz M
    Biochemistry; 1992 Feb; 31(5):1399-407. PubMed ID: 1736997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion after monofunctional alkylation by mitomycin C of a dodecamer containing its major binding site.
    Berthelier V; Laigle A; Jollès B; Chinsky L
    J Biomol Struct Dyn; 1995 Feb; 12(4):899-910. PubMed ID: 7779306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recognition of the m5CpG dinucleotide sequence in DNA by mitomycin C for alkylation and cross-linking.
    Johnson WS; He QY; Tomasz M
    Bioorg Med Chem; 1995 Jun; 3(6):851-60. PubMed ID: 7582961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and function modification of DNA by mitomycin C. Mechanism of the DNA sequence specificity of mitomycins.
    Gargiulo D; Kumar GS; Musser SS; Tomasz M
    Nucleic Acids Symp Ser; 1995; (34):169-70. PubMed ID: 8841606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive alkylation of DNA by mitomycin A, a mitomycin with high redox potential.
    McGuinness BF; Lipman R; Goldstein J; Nakanishi K; Tomasz M
    Biochemistry; 1991 Jul; 30(26):6444-53. PubMed ID: 1905153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glutathione on alkylation and cross-linking of DNA by mitomycin C. Isolation of a ternary glutathione-mitomycin-DNA adduct.
    Sharma M; He QY; Tomasz M
    Chem Res Toxicol; 1994; 7(3):401-7. PubMed ID: 8075372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C.
    Suresh Kumar G; Lipman R; Cummings J; Tomasz M
    Biochemistry; 1997 Nov; 36(46):14128-36. PubMed ID: 9369485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of monofunctional and bifunctional alkylation of DNA by mitomycin C.
    Tomasz M; Chawla AK; Lipman R
    Biochemistry; 1988 May; 27(9):3182-7. PubMed ID: 3134045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of the monoalkylated mitomycin C-DNA complex.
    Sastry M; Fiala R; Lipman R; Tomasz M; Patel DJ
    J Mol Biol; 1995 Mar; 247(2):338-59. PubMed ID: 7707379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesion selectivity in blockage of lambda exonuclease by DNA damage.
    Mattes WB
    Nucleic Acids Res; 1990 Jul; 18(13):3723-30. PubMed ID: 1695729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mitomycin-N6-deoxyadenosine adduct isolated from DNA.
    Palom Y; Lipman R; Musser SM; Tomasz M
    Chem Res Toxicol; 1998 Mar; 11(3):203-10. PubMed ID: 9544618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of C(5) cytosine methylation at CpG sequences on mitomycin-DNA bonding profiles.
    Li VS; Tang MS; Kohn H
    Bioorg Med Chem; 2001 Apr; 9(4):863-73. PubMed ID: 11354669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoalkylation of DNA by reductively activated FR66979.
    Paz MM; Sigurdsson ST; Hopkins PB
    Bioorg Med Chem; 2000 Jan; 8(1):173-9. PubMed ID: 10968276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA.
    Tomasz M; Lipman R; Chowdary D; Pawlak J; Verdine GL; Nakanishi K
    Science; 1987 Mar; 235(4793):1204-8. PubMed ID: 3103215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-selective alkylation and cross-linking induced by mitomycin C upon activation by DT-diaphorase.
    Prakash AS; Beall H; Ross D; Gibson NW
    Biochemistry; 1993 Jun; 32(21):5518-25. PubMed ID: 8504072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4.
    Kaiser VL; Ripley LS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2234-8. PubMed ID: 7892253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthramycin binding to deoxyribonucleic acid-mitomycin C complexes. Evidence for drug-induced deoxyribonucleic acid conformational change and cooperativity in mitomycin C binding.
    Kaplan DJ; Hurley LH
    Biochemistry; 1981 Dec; 20(26):7572-80. PubMed ID: 6798992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the antitumor antibiotic mitomycin C with Z-DNA.
    Chawla AK; Tomasz M
    J Biomol Struct Dyn; 1988 Dec; 6(3):459-70. PubMed ID: 3271532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities.
    Stocki SA; Nonay RL; Reha-Krantz LJ
    J Mol Biol; 1995 Nov; 254(1):15-28. PubMed ID: 7473755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.