These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 7820887)
1. Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage. Caprari P; Bozzi A; Malorni W; Bottini A; Iosi F; Santini MT; Salvati AM Chem Biol Interact; 1995 Mar; 94(3):243-58. PubMed ID: 7820887 [TBL] [Abstract][Full Text] [Related]
2. pH-induced denaturation of spectrin changes the interaction of membrane proteins in erythrocyte ghosts. Biochemical and electron microscopic evidence. Baumann E; Linss W; Fröhner M; Stoya G; Richter W Ann Anat; 1994 Jan; 176(1):93-9. PubMed ID: 8304598 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide. Mendanha SA; Anjos JL; Silva AH; Alonso A Braz J Med Biol Res; 2012 Jun; 45(6):473-81. PubMed ID: 22473321 [TBL] [Abstract][Full Text] [Related]
5. t-butyl hydroperoxide-induced perturbations of human erythrocytes as a model for oxidant stress. Rice-Evans C; Baysal E; Pashby DP; Hochstein P Biochim Biophys Acta; 1985 May; 815(3):426-32. PubMed ID: 3995035 [TBL] [Abstract][Full Text] [Related]
6. A flow EPR study of deformation and orientation characteristics of erythrocyte ghosts: a possible effect of an altered state of cytoskeletal network. Ito T; Kon H J Membr Biol; 1988; 101(1):57-65. PubMed ID: 2835487 [TBL] [Abstract][Full Text] [Related]
7. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton. Saito M; Watanabe-Nakayama T; Machida S; Osada T; Afrin R; Ikai A Biophys Chem; 2015; 200-201():1-8. PubMed ID: 25866912 [TBL] [Abstract][Full Text] [Related]
8. The effect of the lipid-binding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures. Chorzalska A; Lach A; Borowik T; Wolny M; Hryniewicz-Jankowska A; Kolondra A; Langner M; Sikorski AF Cell Mol Biol Lett; 2010 Sep; 15(3):406-23. PubMed ID: 20352359 [TBL] [Abstract][Full Text] [Related]
9. Different susceptibilities to cell death induced by t-butylhydroperoxide could depend upon cell histotype-associated growth features. Malorni W; Rainaldi G; Rivabene R; Santini MT Cell Biol Toxicol; 1994 Aug; 10(4):207-18. PubMed ID: 7895150 [TBL] [Abstract][Full Text] [Related]
10. A markedly disrupted skeletal network with abnormally distributed intramembrane particles in complete protein 4.1-deficient red blood cells (allele 4.1 Madrid): implications regarding a critical role of protein 4.1 in maintenance of the integrity of the red blood cell membrane. Yawata A; Kanzaki A; Gilsanz F; Delaunay J; Yawata Y Blood; 1997 Sep; 90(6):2471-81. PubMed ID: 9310500 [TBL] [Abstract][Full Text] [Related]
11. Alteration of the erythrocyte membrane via enzymatic degradation of ankyrin (band 2.1): subcellular surgery characterized by EPR spectroscopy. Hensley K; Postlewaite J; Dobbs P; Butterfield DA Biochim Biophys Acta; 1993 Feb; 1145(2):205-11. PubMed ID: 8381664 [TBL] [Abstract][Full Text] [Related]
12. Association state of human red blood cell band 3 and its interaction with ankyrin. Pinder JC; Pekrun A; Maggs AM; Brain AP; Gratzer WB Blood; 1995 May; 85(10):2951-61. PubMed ID: 7742555 [TBL] [Abstract][Full Text] [Related]
13. Prooxidant and antioxidant effects of ascorbate on tBuOOH-induced erythrocyte membrane damage. Baysal E; Sullivan SG; Stern A Int J Biochem; 1989; 21(10):1109-13. PubMed ID: 2583346 [TBL] [Abstract][Full Text] [Related]
14. Prehemolytic effects of hydrogen peroxide and t-butylhydroperoxide on selected red cell properties. Chen MJ; Sorette MP; Chiu DT; Clark MR Biochim Biophys Acta; 1991 Jul; 1066(2):193-200. PubMed ID: 1906750 [TBL] [Abstract][Full Text] [Related]
16. Oxidative processes in red blood cells from normal and diabetic individuals. Bryszewska M; Zavodnik IB; Niekurzak A; Szosland K Biochem Mol Biol Int; 1995 Oct; 37(2):345-54. PubMed ID: 8673018 [TBL] [Abstract][Full Text] [Related]
17. A dynamical study on the interactions between the cytoskeleton components in the human erythrocyte as detected by saturation transfer electron paramagnetic resonance of spin-labeled spectrin, ankyrin, and protein 4.1. Dubreuil YL; Cassoly R Arch Biochem Biophys; 1983 Jun; 223(2):495-502. PubMed ID: 6305282 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructure of the intact skeleton of the human erythrocyte membrane. Shen BW; Josephs R; Steck TL J Cell Biol; 1986 Mar; 102(3):997-1006. PubMed ID: 2936753 [TBL] [Abstract][Full Text] [Related]
19. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin. Jarolim P; Lahav M; Liu SC; Palek J Blood; 1990 Nov; 76(10):2125-31. PubMed ID: 2242431 [TBL] [Abstract][Full Text] [Related]
20. ESR studies of the erythrocyte membrane skeletal protein network: influence of the state of aggregation of spectrin on the physical state of membrane proteins, bilayer lipids, and cell surface carbohydrates. Farmer BT; Harmon TM; Butterfield DA Biochim Biophys Acta; 1985 Dec; 821(3):420-30. PubMed ID: 3000446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]