These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 7820887)
21. Erythrocyte spectrin maintains its segmental motions on oxidation: a spin-label EPR study. Fung LW; Kalaw BO; Hatfield RM; Dias MN Biophys J; 1996 Feb; 70(2):841-51. PubMed ID: 8789101 [TBL] [Abstract][Full Text] [Related]
22. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Trotta RJ; Sullivan SG; Stern A Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393 [TBL] [Abstract][Full Text] [Related]
23. Cross bonding and stiffening of the red cell membrane. Fischer TM Biochim Biophys Acta; 1989 Oct; 985(2):218-28. PubMed ID: 2804105 [TBL] [Abstract][Full Text] [Related]
24. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. Lux SE; John KM; Ukena TE J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286 [TBL] [Abstract][Full Text] [Related]
25. The spectrin-actin junction of erythrocyte membrane skeletons. Bennett V Biochim Biophys Acta; 1989 Jan; 988(1):107-21. PubMed ID: 2642392 [TBL] [Abstract][Full Text] [Related]
26. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes. Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802 [TBL] [Abstract][Full Text] [Related]
27. Hemolysis of human erythrocytes with saponin affects the membrane structure. Baumann E; Stoya G; Völkner A; Richter W; Lemke C; Linss W Acta Histochem; 2000 Feb; 102(1):21-35. PubMed ID: 10726162 [TBL] [Abstract][Full Text] [Related]
28. Protective effect of resveratrol on formation of membrane protein carbonyls and lipid peroxidation in erythrocytes subjected to oxidative stress. Pandey KB; Rizvi SI Appl Physiol Nutr Metab; 2009 Dec; 34(6):1093-7. PubMed ID: 20029519 [TBL] [Abstract][Full Text] [Related]
29. Visualization of the protein associations in the erythrocyte membrane skeleton. Byers TJ; Branton D Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6153-7. PubMed ID: 3862123 [TBL] [Abstract][Full Text] [Related]
30. Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tert-butyl hydroperoxide. Zavodnik LB; Zavodnik IB; Niekurzak A; Szosland K; Bryszewska M Biochem Mol Biol Int; 1998 Mar; 44(3):577-88. PubMed ID: 9556219 [TBL] [Abstract][Full Text] [Related]
31. Increased susceptibility of the sickle cell membrane Ca2+ + Mg(2+)-ATPase to t-butylhydroperoxide: protective effects of ascorbate and desferal. Moore RB; Hulgan TM; Green JW; Jenkins LD Blood; 1992 Mar; 79(5):1334-41. PubMed ID: 1531618 [TBL] [Abstract][Full Text] [Related]
32. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Picart C; Dalhaimer P; Discher DE Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606 [TBL] [Abstract][Full Text] [Related]
33. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin. Moon RT; Lazarides E J Cell Biol; 1984 May; 98(5):1899-904. PubMed ID: 6233291 [TBL] [Abstract][Full Text] [Related]
34. Isolated beta-globin chains reproduce, in normal red cell membranes, the defective binding of spectrin to alpha-thalassaemic membranes. Shalev O; Shinar E; Lux SE Br J Haematol; 1996 Aug; 94(2):273-8. PubMed ID: 8759886 [TBL] [Abstract][Full Text] [Related]
35. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477 [TBL] [Abstract][Full Text] [Related]
36. On the thickness of the red cell membrane skeleton: quantitative electron microscopy of maximally narrowed isthmus regions of intact cells. Bull BS; Weinstein RS; Korpman RA Blood Cells; 1986; 12(1):25-42. PubMed ID: 3790736 [TBL] [Abstract][Full Text] [Related]
37. The effect of oxidizing agents and diabetes mellitus on the human red blood cell membrane potential. Augustyniak K; Zavodnik I; Palecz D; Szosland K; Bryszewska M Clin Biochem; 1996 Jun; 29(3):283-6. PubMed ID: 8740517 [No Abstract] [Full Text] [Related]
39. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Pestonjamasp KN; Mehta NG Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552 [TBL] [Abstract][Full Text] [Related]
40. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency. Fang Z; Jiang C; Tang J; He M; Lin X; Chen X; Han L; Zhang Z; Feng Y; Guo Y; Li H; Jiang W J Struct Biol; 2016 Jun; 194(3):235-43. PubMed ID: 26496826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]