These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7820901)

  • 41. Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain.
    Pandit KR; Klauda JB
    Biochim Biophys Acta; 2012 May; 1818(5):1205-10. PubMed ID: 22274566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
    Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J
    ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Titratable Amphiphiles in Lipid Membranes by Fluorescence Spectroscopy.
    Pierrat P; Lebeau L
    Langmuir; 2015 Nov; 31(45):12362-71. PubMed ID: 26507074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures.
    Šachl R; Mikhalyov I; Gretskaya N; Olżyńska A; Hof M; Johansson LB
    Phys Chem Chem Phys; 2011 Jun; 13(24):11694-701. PubMed ID: 21597615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae.
    Cevc G
    Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An intramolecular excimer forming probe used to study the interaction of alpha-lactalbumin with model membranes.
    Dangreau H; Joniau M; De Cuyper M; Hanssens I
    Biochemistry; 1982 Jul; 21(15):3594-8. PubMed ID: 7150417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study.
    Sassaroli M; Ruonala M; Virtanen J; Vauhkonen M; Somerharju P
    Biochemistry; 1995 Jul; 34(27):8843-51. PubMed ID: 7612625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The structure and stability of phospholipid bilayers by atomic force microscopy.
    Hui SW; Viswanathan R; Zasadzinski JA; Israelachvili JN
    Biophys J; 1995 Jan; 68(1):171-8. PubMed ID: 7711239
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane composition determines pardaxin's mechanism of lipid bilayer disruption.
    Hallock KJ; Lee DK; Omnaas J; Mosberg HI; Ramamoorthy A
    Biophys J; 2002 Aug; 83(2):1004-13. PubMed ID: 12124282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydration and stability of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles.
    Wu X; Li QT
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):285-94. PubMed ID: 9889384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of sodium chloride on a lipid bilayer.
    Böckmann RA; Hac A; Heimburg T; Grubmüller H
    Biophys J; 2003 Sep; 85(3):1647-55. PubMed ID: 12944279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane docking mode of the C2 domain of PKCε: an infrared spectroscopy and FRET study.
    Ausili A; Berglin M; Elwing H; Egea-Jiménez AL; Corbalán-García S; Gómez-Fernández JC
    Biochim Biophys Acta; 2013 Feb; 1828(2):552-60. PubMed ID: 23088913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular view of hexagonal phase formation in phospholipid membranes.
    Marrink SJ; Mark AE
    Biophys J; 2004 Dec; 87(6):3894-900. PubMed ID: 15377528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy.
    Nojima Y; Iwata K
    J Phys Chem B; 2014 Jul; 118(29):8631-41. PubMed ID: 24967901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane.
    Goss R; Latowski D; Grzyb J; Vieler A; Lohr M; Wilhelm C; Strzalka K
    Biochim Biophys Acta; 2007 Jan; 1768(1):67-75. PubMed ID: 16843433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids.
    Mitchell DC; Litman BJ
    Biophys J; 1998 Feb; 74(2 Pt 1):879-91. PubMed ID: 9533699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.