BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 7821380)

  • 1. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells.
    Hsu SC; Molday RS
    J Biol Chem; 1991 Nov; 266(32):21745-52. PubMed ID: 1939198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells.
    Mandarino LJ; Finlayson J; Hassell JR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):964-72. PubMed ID: 8125759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of hexose transporters of chicken embryo fibroblasts during glucose starvation.
    Tillotson LG; Yamada K; Isselbacher KJ
    Fed Proc; 1984 May; 43(8):2262-4. PubMed ID: 6325251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation.
    Germinario RJ; Manuel S; Chang Z; Leckett B
    J Cell Physiol; 1992 Apr; 151(1):156-63. PubMed ID: 1560041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
    Hellwig B; Joost HG
    Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods.
    Lopez-Escalera R; Li XB; Szerencsei RT; Schnetkamp PP
    Biochemistry; 1991 Sep; 30(37):8970-6. PubMed ID: 1892814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM
    J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter.
    Joost HG; Steinfelder HJ
    Mol Pharmacol; 1987 Mar; 31(3):279-83. PubMed ID: 3470598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells.
    Sone H; Deo BK; Kumagai AK
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1876-84. PubMed ID: 10845612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoaffinity labeling of insulin-sensitive hexose transporters in intact rat adipocytes. Direct evidence that latent transporters become exposed to the extracellular space in response to insulin.
    Oka Y; Czech MP
    J Biol Chem; 1984 Jul; 259(13):8125-33. PubMed ID: 6376500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the anticancer agent VM-26 on hexose uptake in Ehrlich cells.
    Wright SE; White JC
    Cancer Biochem Biophys; 1989 May; 10(3):185-96. PubMed ID: 2776116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.