BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7821384)

  • 1. In vivo release of catecholamines from xenogeneic chromaffin cell grafts with antidepressive activity.
    Sortwell CE; Petty F; Kramer G; Sagen J
    Exp Neurol; 1994 Nov; 130(1):1-8. PubMed ID: 7821384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromaffin cell xenografts in the rat neocortex can produce antidepressive activity in the forced swimming test.
    Sortwell CE; Pappas GD; Sagen J
    Exp Brain Res; 1995; 103(1):59-69. PubMed ID: 7615038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathecal xenogeneic chromaffin cell grafts reduce nociceptive behavior in a rodent tonic pain model.
    Sol JC; Sallerin B; Larrue S; Li RY; Jozan S; Tortosa F; Mascott C; Carraoue F; Tafani M; Lazorthes Y
    Exp Neurol; 2004 Apr; 186(2):198-211. PubMed ID: 15026256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival and integration of bovine chromaffin cells transplanted into rat central nervous system without exogenous trophic factors.
    Ortega JD; Sagen J; Pappas GD
    J Comp Neurol; 1992 Sep; 323(1):13-24. PubMed ID: 1430313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo demonstration of a paracrine, inhibitory action of Met-enkephalin on adrenomedullary catecholamine release in the rat.
    Jarry H; Dietrich M; Barthel A; Giesler A; Wuttke W
    Endocrinology; 1989 Aug; 125(2):624-9. PubMed ID: 2752969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucagon does not affect catecholamine release in primary cultures of bovine adrenal chromaffin cells.
    Sharabi Y; Zimlichman R; Alesci S; Huynh T; Mansouri R; Chun J; Perera S; Pacak K; Goldstein DS
    Horm Metab Res; 2005 Apr; 37(4):205-8. PubMed ID: 15952078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of allodynia by intrathecal transplantation of microencapsulated porcine chromaffin cells.
    Kim YM; Kwak KH; Lim JO; Baek WY
    Artif Organs; 2009 Mar; 33(3):240-9. PubMed ID: 19245523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porcine chromaffin cells, culture, and transplant for antinociceptive effects in rodents and primates.
    Lu Y; Jing R; Yeomans DC; Pappas GD
    Neurol Res; 2004 Oct; 26(7):707-12. PubMed ID: 15494107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ACTH and aminoglutethimide on the catecholamine content and chromaffin cell morphology of the adrenal medulla of the neonatal rat.
    Kent C; Parker KG
    J Anat; 1993 Dec; 183 ( Pt 3)(Pt 3):601-7. PubMed ID: 8300437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplants of immunologically isolated xenogeneic chromaffin cells provide a long-term source of pain-reducing neuroactive substances.
    Sagen J; Wang H; Tresco PA; Aebischer P
    J Neurosci; 1993 Jun; 13(6):2415-23. PubMed ID: 7684773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrastriatal transplantation of rat adrenal chromaffin cells seeded on microcarrier beads promote long-term functional recovery in hemiparkinsonian rats.
    Borlongan CV; Saporta S; Sanberg PR
    Exp Neurol; 1998 Jun; 151(2):203-14. PubMed ID: 9628755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term enhanced chromaffin cell survival and behavioral recovery in hemiparkinsonian rats with co-grafted polymer-encapsulated human NGF-secreting cells.
    Date I; Shingo T; Ohmoto T; Emerich DF
    Exp Neurol; 1997 Sep; 147(1):10-7. PubMed ID: 9294398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cultured adrenal chromaffin cell implants on hindlimb reflexes of the 6-OHDA lesioned rat.
    Pulford BE; Mihajlov AR; Nornes HO; Whalen LR
    J Neural Transplant Plast; 1994; 5(2):89-102. PubMed ID: 7703294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and initial characterization of conditionally immortalized chromaffin cells.
    Eaton MJ; Frydel BR; Lopez TL; Nie XT; Huang J; McKillop J; Sagen J
    J Cell Biochem; 2000 Jul; 79(1):38-57. PubMed ID: 10906754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoisolated chromaffin cells implanted into the subarachnoid space of rats reduce cold allodynia in a model of neuropathic pain: a novel application of microencapsulation technology.
    Kim YM; Jeon YH; Jin GC; Lim JO; Baek WY
    Artif Organs; 2004 Dec; 28(12):1059-66. PubMed ID: 15554933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of microencapsulated bovine chromaffin cells reduces lesion-induced rotational asymmetry in rats.
    Aebischer P; Tresco PA; Sagen J; Winn SR
    Brain Res; 1991 Sep; 560(1-2):43-9. PubMed ID: 1760745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyoma-induced neoplasms of the mouse adrenal medulla. Characterization of the tumors and establishment of cell lines.
    Tischler AS; Freund R; Carroll J; Cahill AL; Perlman RL; Alroy J; Riseberg JC
    Lab Invest; 1993 May; 68(5):541-9. PubMed ID: 8098784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space.
    Hama AT; Sagen J
    Brain Res; 1994 Jul; 651(1-2):183-93. PubMed ID: 7922566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of xenotransplant immunogenicity and immunosuppression on host MHC expression in the rat CNS.
    Czech KA; Ryan JW; Sagen J; Pappas GD
    Exp Neurol; 1997 Sep; 147(1):66-83. PubMed ID: 9294404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of catecholamine release from deer adrenal medullary chromaffin cells.
    Douglas SA; Stevenson KE; Knowles PJ; Bunn SJ
    Neurosci Lett; 2008 Nov; 445(1):126-9. PubMed ID: 18775475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.