BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7821544)

  • 41. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family.
    Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C
    J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (Complex I) from Rhodobacter capsulatus.
    Chevallet M; Dupuis A; Issartel JP; Lunardi J; van Belzen R; Albracht SP
    Biochim Biophys Acta; 2003 Mar; 1557(1-3):51-66. PubMed ID: 12615348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X-ray absorption spectroscopic characterization of the molybdenum site of Escherichia coli dimethyl sulfoxide reductase.
    George GN; Doonan CJ; Rothery RA; Boroumand N; Weiner JH
    Inorg Chem; 2007 Jan; 46(1):2-4. PubMed ID: 17198404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Geometric control of reduction potential in oxomolybdenum centers: implications to the serine coordination in DMSO reductase.
    Davie SR; Rubie ND; Hammes BS; Carrano CJ; Kirk ML; Basu P
    Inorg Chem; 2001 Jun; 40(12):2632-3. PubMed ID: 11375669
    [No Abstract]   [Full Text] [Related]  

  • 45. Characterization of the redox centers in dimethyl sulfide dehydrogenase from Rhodovulum sulfidophilum.
    McDevitt CA; Hanson GR; Noble CJ; Cheesman MR; McEwan AG
    Biochemistry; 2002 Dec; 41(51):15234-44. PubMed ID: 12484761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and sequence analysis of the dimethylsulfoxide reductase structural gene from Rhodobacter capsulatus.
    Shaw AL; Hanson GR; McEwan AG
    Biochim Biophys Acta; 1996 Sep; 1276(3):176-80. PubMed ID: 8856102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistic studies of Rhodobacter sphaeroides Me2SO reductase.
    Cobb N; Conrads T; Hille R
    J Biol Chem; 2005 Mar; 280(12):11007-17. PubMed ID: 15649898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dendrimer encapsulation of [MoVOS4] cores: implications for the DMSO reductase family of enzymes.
    Mondal S; Basu P
    Inorg Chem; 2001 Jan; 40(2):192-3. PubMed ID: 11170521
    [No Abstract]   [Full Text] [Related]  

  • 49. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase.
    Raitsimring AM; Astashkin AV; Feng C; Enemark JH; Nelson KJ; Rajagopalan KV
    J Biol Inorg Chem; 2003 Jan; 8(1-2):95-104. PubMed ID: 12459903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quinoline oxidoreductase from Pseudomonas putida 86: an improved purification procedure and electron paramagnetic resonance spectroscopy.
    Tshisuaka B; Kappl R; Hüttermann J; Lingens F
    Biochemistry; 1993 Nov; 32(47):12928-34. PubMed ID: 8251516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EPR spectroscopic characterization of an 'iron only' nitrogenase. S = 3/2 spectrum of component 1 isolated from Rhodobacter capsulatus.
    Müller A; Schneider K; Knüttel K; Hagen WR
    FEBS Lett; 1992 May; 303(1):36-40. PubMed ID: 1317300
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ubiquinone binding capacity of the Rhodobacter capsulatus cytochrome bc1 complex: effect of diphenylamine, a weak binding QO site inhibitor.
    Sharp RE; Palmitessa A; Gibney BR; White JL; Moser CC; Daldal F; Dutton PL
    Biochemistry; 1999 Mar; 38(11):3440-6. PubMed ID: 10079091
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems.
    Lindenstrauss U; Brüser T
    J Bacteriol; 2006 Nov; 188(22):7807-14. PubMed ID: 16980457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus: a comparative study on the redox properties of the metal clusters present in the dinitrogenase components.
    Siemann S; Schneider K; Dröttboom M; Müller A
    Eur J Biochem; 2002 Mar; 269(6):1650-61. PubMed ID: 11895435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism.
    Tichi MA; Tabita FR
    J Bacteriol; 2001 Nov; 183(21):6344-54. PubMed ID: 11591679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray absorption spectroscopy of a quantitatively Mo(V) dimethyl sulfoxide reductase species.
    Pushie MJ; Cotelesage JJ; Lyashenko G; Hille R; George GN
    Inorg Chem; 2013 Mar; 52(6):2830-7. PubMed ID: 23445435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The amino acid sequence of Rhodobacter sphaeroides dimethyl sulfoxide reductase.
    Barber MJ; Van Valkenburgh H; Trimboli AJ; Pollock VV; Neame PJ; Bastian NR
    Arch Biochem Biophys; 1995 Jul; 320(2):266-75. PubMed ID: 7625833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis.
    Davidson E; Ohnishi T; Atta-Asafo-Adjei E; Daldal F
    Biochemistry; 1992 Apr; 31(13):3342-51. PubMed ID: 1313292
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electron paramagnetic resonance properties and oxidation-reduction potentials of the molybdenum, flavin, and iron-sulfur centers of chicken liver xanthine dehydrogenase.
    Barber MJ; Coughlan MP; Kanda M; Rajagopalan KV
    Arch Biochem Biophys; 1980 May; 201(2):468-75. PubMed ID: 6249208
    [No Abstract]   [Full Text] [Related]  

  • 60. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.