BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 7822106)

  • 1. Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH.
    Perich JW
    Int J Pept Protein Res; 1994 Sep; 44(3):288-94. PubMed ID: 7822106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asparagine coupling in Fmoc solid phase peptide synthesis.
    Gausepohl H; Kraft M; Frank RW
    Int J Pept Protein Res; 1989 Oct; 34(4):287-94. PubMed ID: 2599767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of protected peptide amides using the Fmoc chemical protocol. Comparison of resins for solid phase synthesis.
    Story SC; Aldrich JV
    Int J Pept Protein Res; 1992 Jan; 39(1):87-92. PubMed ID: 1353068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-Phase Total Synthesis of Bacitracin A.
    Lee J; Griffin JH; Nicas TI
    J Org Chem; 1996 Jun; 61(12):3983-3986. PubMed ID: 11667271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incomplete Fmoc deprotection in solid-phase synthesis of peptides.
    Larsen BD; Holm A
    Int J Pept Protein Res; 1994 Jan; 43(1):1-9. PubMed ID: 8138344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fmoc/solid-phase synthesis of Tyr(P)-containing peptides through t-butyl phosphate protection.
    Perich JW; Reynolds EC
    Int J Pept Protein Res; 1991 Jun; 37(6):572-5. PubMed ID: 1717394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Fmoc/solid-phase peptide synthesis of O-phosphotyrosyl-containing peptides and their use as phosphatase substrates.
    Perich JW; Ruzzene M; Pinna LA; Reynolds EC
    Int J Pept Protein Res; 1994 Jan; 43(1):39-46. PubMed ID: 7511131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical synthesis of O-thiophosphotyrosyl peptides.
    Kitas E; Küng E; Bannwarth W
    Int J Pept Protein Res; 1994 Feb; 43(2):146-53. PubMed ID: 8200732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of O-phosphotyrosine-containing peptides.
    Perich JW
    Methods Enzymol; 1991; 201():234-45. PubMed ID: 1719342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pegylated peptides. II. Solid-phase synthesis of amino-, carboxy- and side-chain pegylated peptides.
    Lu YA; Felix AM
    Int J Pept Protein Res; 1994 Feb; 43(2):127-38. PubMed ID: 8200730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient solid phase synthesis of mixed Thr(P)-, Ser(P)- and Tyr(P)-containing phosphopeptides by "global" "phosphite-triester" phosphorylation.
    Perich JW
    Int J Pept Protein Res; 1992 Aug; 40(2):134-40. PubMed ID: 1280250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of the very acid-sensitive Fmoc-Cys(Mmt)-OH and its application in solid-phase peptide synthesis.
    Barlos K; Gatos D; Hatzi O; Koch N; Koutsogianni S
    Int J Pept Protein Res; 1996 Mar; 47(3):148-53. PubMed ID: 8740963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS.
    Behrendt R; Huber S; Martí R; White P
    J Pept Sci; 2015 Aug; 21(8):680-7. PubMed ID: 26077723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis.
    King DS; Fields CG; Fields GB
    Int J Pept Protein Res; 1990 Sep; 36(3):255-66. PubMed ID: 2279849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aspartimide problem in Fmoc-based SPPS. Part III.
    Mergler M; Dick F
    J Pept Sci; 2005 Oct; 11(10):650-7. PubMed ID: 15849777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen fluoride catalyzed migration of side chain protecting groups onto Fmoc during solid phase peptide synthesis. Characterization by CF-FAB analysis of carboxypeptidase digestions and NMR spectroscopy.
    Grode SH; Strother DS; Runge TA; Dobrowolski PJ
    Int J Pept Protein Res; 1992 Dec; 40(6):538-45. PubMed ID: 1286938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfonation of arginine residues as side reaction in Fmoc-peptide synthesis.
    Beck-Sickinger AG; Schnorrenberg G; Metzger J; Jung G
    Int J Pept Protein Res; 1991 Jul; 38(1):25-31. PubMed ID: 1938103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling strategies in solid-phase synthesis of glycopeptides.
    Otvos L; Wroblewski K; Kollat E; Perczel A; Hollosi M; Fasman GD; Ertl HC; Thurin J
    Pept Res; 1989; 2(6):362-6. PubMed ID: 2520774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis and use of pp60src-related peptides and phosphopeptides as substrates for enzymatic phosphorylation studies.
    Perich JW; Meggio F; Valerio RM; Johns RB; Pinna LA; Reynolds EC
    Bioorg Med Chem; 1993 Nov; 1(5):381-8. PubMed ID: 7521748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.