These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7822277)

  • 1. Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases.
    Takada T; Iida K; Moss J
    J Biol Chem; 1995 Jan; 270(2):541-4. PubMed ID: 7822277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common structure of the catalytic sites of mammalian and bacterial toxin ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Mol Cell Biochem; 1994 Sep; 138(1-2):177-81. PubMed ID: 7898462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins.
    Marsischky GT; Wilson BA; Collier RJ
    J Biol Chem; 1995 Feb; 270(7):3247-54. PubMed ID: 7852410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin.
    Lobet Y; Cluff CW; Cieplak W
    Infect Immun; 1991 Sep; 59(9):2870-9. PubMed ID: 1908825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes.
    Okazaki IJ; Kim HJ; McElvaney NG; Lesma E; Moss J
    Blood; 1996 Aug; 88(3):915-21. PubMed ID: 8704249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of NAD:arginine ADP-ribosyltransferases.
    Moss J; Balducci E; Cavanaugh E; Kim HJ; Konczalik P; Lesma EA; Okazaki IJ; Park M; Shoemaker M; Stevens LA; Zolkiewska A
    Mol Cell Biochem; 1999 Mar; 193(1-2):109-13. PubMed ID: 10331646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins.
    Koch-Nolte F; Petersen D; Balasubramanian S; Haag F; Kahlke D; Willer T; Kastelein R; Bazan F; Thiele HG
    J Biol Chem; 1996 Mar; 271(13):7686-93. PubMed ID: 8631807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of synthetic peptides and site-specific antibodies to localize a diphtheria toxin sequence associated with ADP-ribosyltransferase activity.
    Olson JC
    J Bacteriol; 1993 Feb; 175(3):898-901. PubMed ID: 8423159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acid residues essential for the enzymatic activities of pertussis toxin.
    Locht C; Capiau C; Feron C
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3075-9. PubMed ID: 2470088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases.
    Okazaki IJ; Zolkiewska A; Nightingale MS; Moss J
    Biochemistry; 1994 Nov; 33(43):12828-36. PubMed ID: 7947688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamic acid 207 in rodent T-cell RT6 antigens is essential for arginine-specific ADP-ribosylation.
    Hara N; Tsuchiya M; Shimoyama M
    J Biol Chem; 1996 Nov; 271(47):29552-5. PubMed ID: 8939882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase.
    Okazaki IJ; Kim HJ; Moss J
    J Biol Chem; 1996 Sep; 271(36):22052-7. PubMed ID: 8703012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages.
    Domenighini M; Rappuoli R
    Mol Microbiol; 1996 Aug; 21(4):667-74. PubMed ID: 8878030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase in ADP-ribosyltransferase activity of rat T lymphocyte alloantigen RT6.1 by a single amino acid mutation.
    Maehama T; Hoshino S; Katada T
    FEBS Lett; 1996 Jun; 388(2-3):189-91. PubMed ID: 8690084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-ribosylation and early transcription regulation by bacteriophage T4.
    Wilkens K; Tiemann B; Bazan F; RĂ¼ger W
    Adv Exp Med Biol; 1997; 419():71-82. PubMed ID: 9193638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse Rt6.1 is a thiol-dependent arginine-specific ADP-ribosyltransferase.
    Hara N; Badruzzaman M; Sugae T; Shimoyama M; Tsuchiya M
    Eur J Biochem; 1999 Jan; 259(1-2):289-94. PubMed ID: 9914505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.