These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 7822801)
1. Human granulocytes contain an opiate alkaloid-selective receptor mediating inhibition of cytokine-induced activation and chemotaxis. Makman MH; Bilfinger TV; Stefano GB J Immunol; 1995 Feb; 154(3):1323-30. PubMed ID: 7822801 [TBL] [Abstract][Full Text] [Related]
2. The mu opioid receptor mediates morphine-induced tumor necrosis factor and interleukin-6 inhibition in toll-like receptor 2-stimulated monocytes. Bonnet MP; Beloeil H; Benhamou D; Mazoit JX; Asehnoune K Anesth Analg; 2008 Apr; 106(4):1142-9, table of contents. PubMed ID: 18349186 [TBL] [Abstract][Full Text] [Related]
3. Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors. Zhao GM; Qian X; Schiller PW; Szeto HH J Pharmacol Exp Ther; 2003 Dec; 307(3):947-54. PubMed ID: 14534366 [TBL] [Abstract][Full Text] [Related]
4. [The nervous system and the immune system: the role of morphine and opioid peptides in the function of neutrophilic granulocytes]. Pasotti D; Mazzone A; Ricevuti G Minerva Med; 1992; 83(7-8):433-8. PubMed ID: 1326093 [TBL] [Abstract][Full Text] [Related]
5. Morphine receptors in immunocytes and neurons. Makman MH Adv Neuroimmunol; 1994; 4(2):69-82. PubMed ID: 7952830 [TBL] [Abstract][Full Text] [Related]
6. Properties of mu 3 opiate alkaloid receptors in macrophages, astrocytes, and HL-60 human promyelocytic leukemia cells. Makman MH; Dobrenis K; Surratt CK Adv Exp Med Biol; 1998; 437():137-48. PubMed ID: 9666265 [TBL] [Abstract][Full Text] [Related]
7. Effects of prolyl-leucyl-glycinamide and cyclo(leucyl-glycine) on morphine-induced antinociception and brain mu, delta and kappa opiate receptors. Bhargava HN; Pandey RN; Matwyshyn GA Life Sci; 1983 May; 32(18):2096-101. PubMed ID: 6133201 [TBL] [Abstract][Full Text] [Related]
8. Differential regulation of mu and delta opiate receptors by morphine, selective agonists and antagonists and differentiating agents in SH-SY5Y human neuroblastoma cells. Zadina JE; Harrison LM; Ge LJ; Kastin AJ; Chang SL J Pharmacol Exp Ther; 1994 Sep; 270(3):1086-96. PubMed ID: 7932156 [TBL] [Abstract][Full Text] [Related]
10. Modification of the development of acute opiate tolerance by increased dopamine receptor sensitivity. Martin JR; Takemori AE J Pharmacol Exp Ther; 1987 Apr; 241(1):48-55. PubMed ID: 3572795 [TBL] [Abstract][Full Text] [Related]
11. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Wang HY; Friedman E; Olmstead MC; Burns LH Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of mitogen-activated protein kinase kinases (MEK1/2) by mu-, delta- and kappa-opioid receptor agonists in the rat brain: regulation by chronic morphine and opioid withdrawal. Asensio VJ; Miralles A; GarcĂa-Sevilla JA Eur J Pharmacol; 2006 Jun; 539(1-2):49-56. PubMed ID: 16678156 [TBL] [Abstract][Full Text] [Related]
13. Mu- and delta-opioid receptors inhibitorily linked to dopamine-sensitive adenylate cyclase in rat striatum display a selectivity profile toward endogenous opioid peptides different from that of presynaptic mu, delta and kappa receptors. Schoffelmeer AN; De Vries TJ; Hogenboom F; Mulder AH J Pharmacol Exp Ther; 1993 Oct; 267(1):205-10. PubMed ID: 8229747 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes. Lester PA; Traynor JR Brain Res; 2006 Feb; 1073-1074():290-6. PubMed ID: 16443205 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships for SNC80 and related compounds at cloned human delta and mu opioid receptors. Knapp RJ; Santoro G; De Leon IA; Lee KB; Edsall SA; Waite S; Malatynska E; Varga E; Calderon SN; Rice KC; Rothman RB; Porreca F; Roeske WR; Yamamura HI J Pharmacol Exp Ther; 1996 Jun; 277(3):1284-91. PubMed ID: 8667189 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of chemokine-induced chemotaxis of monkey leukocytes by mu-opioid receptor agonists. Choi Y; Chuang LF; Lam KM; Kung HF; Wang JM; Osburn BI; Chuang RY In Vivo; 1999; 13(5):389-96. PubMed ID: 10654191 [TBL] [Abstract][Full Text] [Related]
17. [The effect of opioid peptides on peripheral blood granulocytes]. Pasotti D; Mazzone A; Lecchini S; Frigo GM; Ricevuti G Riv Eur Sci Med Farmacol; 1993; 15(2):71-81. PubMed ID: 7909619 [TBL] [Abstract][Full Text] [Related]
18. Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. Magazine HI; Liu Y; Bilfinger TV; Fricchione GL; Stefano GB J Immunol; 1996 Jun; 156(12):4845-50. PubMed ID: 8648133 [TBL] [Abstract][Full Text] [Related]
19. In vitro effect of opioid agonist and antagonist on superoxide release by granulocytes. Pasotti D; Mazzone A; Rossi M; Ricevuti G Funct Neurol; 1992; 7(6):445-9. PubMed ID: 1338430 [TBL] [Abstract][Full Text] [Related]
20. Functional effects of systemically administered agonists and antagonists of mu, delta, and kappa opioid receptor subtypes on body temperature in mice. Baker AK; Meert TF J Pharmacol Exp Ther; 2002 Sep; 302(3):1253-64. PubMed ID: 12183687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]