These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Speculations on the evolution of ion transport mechanisms. Wilson TH; Maloney PC Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032 [TBL] [Abstract][Full Text] [Related]
5. Bioenergetics and solute uptake under extreme conditions. Albers SV; Van de Vossenberg JL; Driessen AJ; Konings WN Extremophiles; 2001 Oct; 5(5):285-94. PubMed ID: 11699642 [TBL] [Abstract][Full Text] [Related]
6. Bioenergetic aspects of archaeal and bacterial hydrogen metabolism. Pinske C Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536 [TBL] [Abstract][Full Text] [Related]
7. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
8. Measurements of Ion-Motive Force Across the Cell Membrane. Lin TS; Sun YR; Lo CJ Methods Mol Biol; 2017; 1593():193-201. PubMed ID: 28389955 [TBL] [Abstract][Full Text] [Related]
10. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083 [TBL] [Abstract][Full Text] [Related]
11. Uncoupled active transport mechanisms accounting for low selectivity in multidrug carriers: P-glycoprotein and SMR antiporters. Krupka RM J Membr Biol; 1999 Nov; 172(2):129-43. PubMed ID: 10556361 [TBL] [Abstract][Full Text] [Related]
12. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. Carpaneto A; Geiger D; Bamberg E; Sauer N; Fromm J; Hedrich R J Biol Chem; 2005 Jun; 280(22):21437-43. PubMed ID: 15805107 [TBL] [Abstract][Full Text] [Related]
13. Quantitative measurements of proton motive force and motility in Bacillus subtilis. Shioi JI; Matsuura S; Imae Y J Bacteriol; 1980 Dec; 144(3):891-7. PubMed ID: 6254950 [TBL] [Abstract][Full Text] [Related]
14. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells. Ripple MO; Kim N; Springett R J Biol Chem; 2013 Feb; 288(8):5374-80. PubMed ID: 23306206 [TBL] [Abstract][Full Text] [Related]
15. Role of the electrochemical proton gradient in genetic transformation of Haemophilus influenzae. Bremer W; Kooistra J; Hellingwerf KJ; Konings WN J Bacteriol; 1984 Mar; 157(3):868-73. PubMed ID: 6321440 [TBL] [Abstract][Full Text] [Related]
16. Membrane systems in which foreign proton pumps are incorporated. Driessen AJ; Hellingwerf KJ; Konings WN Microbiol Sci; 1987 Jun; 4(6):173-80. PubMed ID: 2856386 [TBL] [Abstract][Full Text] [Related]
17. A bioenergetic basis for membrane divergence in archaea and bacteria. Sojo V; Pomiankowski A; Lane N PLoS Biol; 2014 Aug; 12(8):e1001926. PubMed ID: 25116890 [TBL] [Abstract][Full Text] [Related]
18. Evolution of membrane bioenergetics. Wilson TH; Lin EC J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255 [TBL] [Abstract][Full Text] [Related]
19. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. Kottra G; Daniel H J Physiol; 2001 Oct; 536(Pt 2):495-503. PubMed ID: 11600684 [TBL] [Abstract][Full Text] [Related]
20. Diffusion-controlled generation of a proton-motive force across a biomembrane. Smirnov AY; Savel'ev SE; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011916. PubMed ID: 19658738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]