These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7823155)

  • 61. Genotype-specific myelin formation around normal axons in cytosine arabinoside-treated organotypic cultures injected with normal or shiverer optic nerve.
    Stanhope GB; Wolf MK; Billings-Gagliardi S
    Brain Res; 1986 Jan; 389(1-2):109-16. PubMed ID: 3948002
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced axonal regeneration following combined demyelination plus schwann cell transplantation therapy in the injured adult spinal cord.
    Keirstead HS; Morgan SV; Wilby MJ; Fawcett JW
    Exp Neurol; 1999 Sep; 159(1):225-36. PubMed ID: 10486190
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oligodendrocytes and myelin formation along the optic tract of the developing hamster: an immunohistochemical study using the Rip antibody.
    Jhaveri S; Erzurumlu RS; Friedman B; Schneider GE
    Glia; 1992; 6(2):138-48. PubMed ID: 1398895
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oligodendrocytes and myelin.
    McLaurin JA; Yong VW
    Neurol Clin; 1995 Feb; 13(1):23-49. PubMed ID: 7739504
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Formation of the myelinated nerve fiber layer in the chicken retina.
    Nakazawa T; Tachi S; Aikawa E; Ihnuma M
    Glia; 1993 Jun; 8(2):114-21. PubMed ID: 7691736
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aberrant growth of regenerating retinotectal axons subsequent to optic tract ablation in goldfish.
    Airhart MJ; Shirk JO; Edwards C
    Brain Res; 1988 Sep; 460(2):383-8. PubMed ID: 2465065
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Epigenetic Regulation of Optic Nerve Development, Protection, and Repair.
    Ashok A; Pooranawattanakul S; Tai WL; Cho KS; Utheim TP; Cestari DM; Chen DF
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012190
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis.
    Hardy RJ; Friedrich VL
    Dev Neurosci; 1996; 18(4):243-54. PubMed ID: 8911764
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Axonal transport of proteoglycans in regenerating goldfish optic nerve.
    Dow KE; Levine RL; Solc MA; DaSilva O; Riopelle RJ
    Exp Neurol; 1994 Mar; 126(1):129-37. PubMed ID: 7512512
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections.
    Bjartmar C; Hildebrand C; Loinder K
    Glia; 1994 Jul; 11(3):235-44. PubMed ID: 7960028
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Formation of compact myelin is required for maturation of the axonal cytoskeleton.
    Brady ST; Witt AS; Kirkpatrick LL; de Waegh SM; Readhead C; Tu PH; Lee VM
    J Neurosci; 1999 Sep; 19(17):7278-88. PubMed ID: 10460234
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin.
    Rubin BP; Dusart I; Schwab ME
    J Neurocytol; 1994 Apr; 23(4):209-17. PubMed ID: 7518504
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transient expression of neurofascin by oligodendrocytes at the onset of myelinogenesis: implications for mechanisms of axon-glial interaction.
    Collinson JM; Marshall D; Gillespie CS; Brophy PJ
    Glia; 1998 May; 23(1):11-23. PubMed ID: 9562181
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Axonal pathfinding during the regeneration of the goldfish optic pathway.
    Bernhardt R
    J Comp Neurol; 1989 Jun; 284(1):119-34. PubMed ID: 2754027
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evidence that the lamina cribrosa prevents intraretinal myelination of retinal ganglion cell axons.
    Perry VH; Lund RD
    J Neurocytol; 1990 Apr; 19(2):265-72. PubMed ID: 2358833
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation.
    Bohn RC; Reier PJ
    J Neurocytol; 1985 Apr; 14(2):221-44. PubMed ID: 4045505
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function.
    Duncan ID; Marik RL; Broman AT; Heidari M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9685-E9691. PubMed ID: 29078396
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oligodendrocytes: Myelination and Axonal Support.
    Simons M; Nave KA
    Cold Spring Harb Perspect Biol; 2015 Jun; 8(1):a020479. PubMed ID: 26101081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.