These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
604 related articles for article (PubMed ID: 7823167)
1. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Contreras D; Steriade M J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167 [TBL] [Abstract][Full Text] [Related]
2. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Timofeev I; Steriade M J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908 [TBL] [Abstract][Full Text] [Related]
3. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. Contreras D; Steriade M J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285 [TBL] [Abstract][Full Text] [Related]
4. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Steriade M; Contreras D; Curró Dossi R; Nuñez A J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808 [TBL] [Abstract][Full Text] [Related]
5. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. Steriade M; Dossi RC; Nuñez A J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080 [TBL] [Abstract][Full Text] [Related]
6. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. Steriade M; Contreras D J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168 [TBL] [Abstract][Full Text] [Related]
7. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. Timofeev I; Grenier F; Steriade M J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954 [TBL] [Abstract][Full Text] [Related]
8. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Steriade M; Nuñez A; Amzica F J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807 [TBL] [Abstract][Full Text] [Related]
9. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Steriade M Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182 [TBL] [Abstract][Full Text] [Related]
10. Synchronization of low-frequency rhythms in corticothalamic networks. Contreras D; Steriade M Neuroscience; 1997 Jan; 76(1):11-24. PubMed ID: 8971755 [TBL] [Abstract][Full Text] [Related]
11. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. Lytton WW; Contreras D; Destexhe A; Steriade M J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229 [TBL] [Abstract][Full Text] [Related]
12. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. Timofeev I; Contreras D; Steriade M J Physiol; 1996 Jul; 494 ( Pt 1)(Pt 1):265-78. PubMed ID: 8814620 [TBL] [Abstract][Full Text] [Related]
13. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes. Burikov AA; Bereshpolova YuI Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501 [TBL] [Abstract][Full Text] [Related]