These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7823322)

  • 1. Centromeric dodeca-satellite DNA sequences form fold-back structures.
    Ferrer N; Azorín F; Villasante A; Gutiérrez C; Abad JP
    J Mol Biol; 1995 Jan; 245(1):8-21. PubMed ID: 7823322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem 5'-GA:GA-3' mismatches account for the high stability of the fold-back structures formed by the centromeric Drosophila dodeca-satellite.
    Ortiz-Lombardía M; Cortés A; Huertas D; Eritja R; Azorín F
    J Mol Biol; 1998 Apr; 277(4):757-62. PubMed ID: 9545369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadruple intercalated G-6 stack: a possible motif in the fold-back structure of the Drosophila centromeric dodeca-satellite?
    Chou SH; Chin KH
    J Mol Biol; 2001 Nov; 314(1):139-52. PubMed ID: 11724539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a C-rich strand fragment of the human centromeric satellite III: a pH-dependent intercalation topology.
    Nonin-Lecomte S; Leroy JL
    J Mol Biol; 2001 Jun; 309(2):491-506. PubMed ID: 11371167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DDP1, a heterochromatin-associated multi-KH-domain protein of Drosophila melanogaster, interacts specifically with centromeric satellite DNA sequences.
    Cortés A; Azorín F
    Mol Cell Biol; 2000 Jun; 20(11):3860-9. PubMed ID: 10805729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for a common centromeric structural motif: Drosophila centromeric satellite DNAs show propensity to form telomeric-like unusual DNA structures.
    Abad JP; Villasante A
    Genetica; 2000; 109(1-2):71-5. PubMed ID: 11293798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster.
    Abad JP; Carmena M; Baars S; Saunders RD; Glover DM; Ludeña P; Sentis C; Tyler-Smith C; Villasante A
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4663-7. PubMed ID: 1584802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysing the contribution of nucleic acids to the structure and properties of centric heterochromatin.
    Cortés A; Huertas D; Marsellach FX; Ferrer-Miralles N; Ortiz-Lombardía M; Fanti L; Pimpinelli S; Piña B; Azorín F
    Genetica; 2003 Mar; 117(2-3):117-25. PubMed ID: 12723691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy.
    Cortés A; Huertas D; Fanti L; Pimpinelli S; Marsellach FX; Piña B; Azorín F
    EMBO J; 1999 Jul; 18(13):3820-33. PubMed ID: 10393197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural polymorphism of homopurine DNA sequences. d(GGA)n and d(GGGA)n repeats form intramolecular hairpins stabilized by different base-pairing interactions.
    Huertas D; Azorín F
    Biochemistry; 1996 Oct; 35(40):13125-35. PubMed ID: 8855950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hairpin structures formed by alpha satellite DNA of human centromeres are cleaved by human topoisomerase IIalpha.
    Jonstrup AT; Thomsen T; Wang Y; Knudsen BR; Koch J; Andersen AH
    Nucleic Acids Res; 2008 Nov; 36(19):6165-74. PubMed ID: 18824478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates.
    Hardin CC; Henderson E; Watson T; Prosser JK
    Biochemistry; 1991 May; 30(18):4460-72. PubMed ID: 2021636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins.
    Zhu L; Chou SH; Reid BR
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12159-64. PubMed ID: 8901550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human chromosomal centromere (AATGG)n sequence forms stable structures with unusual base pairs.
    Jaishree TN; Wang AH
    FEBS Lett; 1994 Jun; 347(1):99-103. PubMed ID: 8013671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs.
    Henderson E; Hardin CC; Walk SK; Tinoco I; Blackburn EH
    Cell; 1987 Dec; 51(6):899-908. PubMed ID: 3690664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species.
    Lee C; Lin CC
    Chromosome Res; 1996 Sep; 4(6):427-35. PubMed ID: 8889241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs.
    Garavís M; Méndez-Lago M; Gabelica V; Whitehead SL; González C; Villasante A
    Sci Rep; 2015 Aug; 5():13307. PubMed ID: 26289671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centromeric Alpha-Satellite DNA Adopts Dimeric i-Motif Structures Capped by AT Hoogsteen Base Pairs.
    Garavís M; Escaja N; Gabelica V; Villasante A; González C
    Chemistry; 2015 Jun; 21(27):9816-24. PubMed ID: 26013031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural bistability of repetitive DNA elements featuring CA/TG dinucleotide steps and mode of evolution of satellite DNA.
    Kato M
    Eur J Biochem; 1999 Oct; 265(1):204-9. PubMed ID: 10491175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.