These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7823554)

  • 21. Non-organic dysphonia. II. Phonetograms for normal and pathological voices.
    Gramming P; Akerlund L
    Acta Otolaryngol; 1988; 106(5-6):468-76. PubMed ID: 3207011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Instrumental dimensioning of normal and pathological phonation using acoustic measurements.
    Putzer M; Barry WJ
    Clin Linguist Phon; 2008 Jun; 22(6):407-20. PubMed ID: 18484282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-organic dysphonia. II. A comparison of subglottal pressures in normal and pathological voices.
    Gramming P
    Acta Otolaryngol; 1989; 107(1-2):156-60. PubMed ID: 2929314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Computer-assisted 3D phonetography].
    Neuschaefer-Rube C; Klajman S
    HNO; 1996 Oct; 44(10):585-9. PubMed ID: 9019467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards objective evaluation of perceived roughness and breathiness: an approach based on mel-frequency cepstral analysis.
    Sáenz-Lechón N; Fraile R; Godino-Llorente JI; Fernández-Baíllo R; Osma-Ruiz V; Gutiérrez-Arriola JM; Arias-Londoño JD
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):52-9. PubMed ID: 20849245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A system for signal processing and data extraction from aerodynamic, acoustic, and electroglottographic signals in the study of voice production.
    Perkell JS; Holmberg EB; Hillman RE
    J Acoust Soc Am; 1991 Apr; 89(4 Pt 1):1777-81. PubMed ID: 2045586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.
    Unger J; Schuster M; Hecker DJ; Schick B; Lohscheller J
    Artif Intell Med; 2016 Jan; 66():15-28. PubMed ID: 26597002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvements in estimating the harmonics-to-noise ratio of the voice.
    Awan SN; Frenkel ML
    J Voice; 1994 Sep; 8(3):255-62. PubMed ID: 7987428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards Objective Voice Assessment: The Diplophonia Diagram.
    Aichinger P; Roesner I; Schneider-Stickler B; Leonhard M; Denk-Linnert DM; Bigenzahn W; Fuchs AK; Hagmüller M; Kubin G
    J Voice; 2017 Mar; 31(2):253.e17-253.e26. PubMed ID: 27473932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters.
    Godino-Llorente JI; Gómez-Vilda P; Blanco-Velasco M
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1943-53. PubMed ID: 17019858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reliability of speaking and maximum voice range measures in screening for dysphonia.
    Ma E; Robertson J; Radford C; Vagne S; El-Halabi R; Yiu E
    J Voice; 2007 Jul; 21(4):397-406. PubMed ID: 16678387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.
    Arias-Londoño JD; Godino-Llorente JI; Markaki M; Stylianou Y
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):60-9. PubMed ID: 21073260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of sustained phonation at high and low pitch on vocal jitter and shimmer.
    Verstraete J; Forrez G; Mertens P; Debruyne F
    Folia Phoniatr (Basel); 1993; 45(5):223-8. PubMed ID: 8253445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Averages of sound pressure levels and mean fundamental frequencies of speech in relation to phonetograms: comparison of nonorganic dysphonia patients before and after therapy.
    Akerlund L
    Acta Otolaryngol; 1993 Jan; 113(1):102-8. PubMed ID: 8442416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voice Disorders in Teachers: Clinical, Videolaryngoscopical, and Vocal Aspects.
    Pereira ER; Tavares EL; Martins RH
    J Voice; 2015 Sep; 29(5):564-71. PubMed ID: 25704475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MultiDimensional Voice Program analysis in children with vocal cord nodules.
    Campisi P; Tewfik TL; Pelland-Blais E; Husein M; Sadeghi N
    J Otolaryngol; 2000 Oct; 29(5):302-8. PubMed ID: 11108490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The self-to-other ratio applied as a phonation detector for voice accumulation.
    Granqvist S
    Logoped Phoniatr Vocol; 2003; 28(2):71-80. PubMed ID: 14582830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.