These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7823853)

  • 1. Pattern recognition metric for comparison of protein structures based on amino acid sequences.
    Schetz JA
    Methods Enzymol; 1994; 240():667-723. PubMed ID: 7823853
    [No Abstract]   [Full Text] [Related]  

  • 2. Snail and spider toxins share a similar tertiary structure and 'cystine motif'.
    Narasimhan L; Singh J; Humblet C; Guruprasad K; Blundell T
    Nat Struct Biol; 1994 Dec; 1(12):850-2. PubMed ID: 7773771
    [No Abstract]   [Full Text] [Related]  

  • 3. The T-knot motif revisited.
    Polticelli F; Pascarella S; Bordo D; Bolognesi M; Ascenzi P
    Biol Chem; 1999 Oct; 380(10):1247-50. PubMed ID: 10595590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins.
    Daquinag AC; Sato T; Koda H; Takao T; Fukuda M; Shimonishi Y; Tsukamoto T
    Biochemistry; 1999 Feb; 38(7):2179-88. PubMed ID: 10026302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of common protein folds: application of protein structure to sequence/structure comparisons.
    Johnson MS; May AC; Rodionov MA; Overington JP
    Methods Enzymol; 1996; 266():575-98. PubMed ID: 8743707
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular diversification in spider venoms: a web of combinatorial peptide libraries.
    Escoubas P
    Mol Divers; 2006 Nov; 10(4):545-54. PubMed ID: 17096075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure prediction and protein design.
    Garnier J; Levin JM; Gibrat JF; Biou V
    Biochem Soc Symp; 1990; 57():11-24. PubMed ID: 2099736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a peptide isomerase from funnel web spider venom.
    Shikata Y; Watanabe T; Teramoto T; Inoue A; Kawakami Y; Nishizawa Y; Katayama K; Kuwada M
    J Biol Chem; 1995 Jul; 270(28):16719-23. PubMed ID: 7622482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins.
    Sachkova MY; Slavokhotova AA; Grishin EV; Vassilevski AA
    Insect Mol Biol; 2014 Aug; 23(4):527-38. PubMed ID: 24717175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy for the identification of toxinlike structures in spider venom.
    Kozlov S; Malyavka A; McCutchen B; Lu A; Schepers E; Herrmann R; Grishin E
    Proteins; 2005 Apr; 59(1):131-40. PubMed ID: 15688451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypeptide neurotoxins from spider venoms.
    Grishin E
    Eur J Biochem; 1999 Sep; 264(2):276-80. PubMed ID: 10491071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cDNA and genomic DNA organization of a novel toxin SHT-I from spider Ornithoctonus huwena.
    Qiao P; Zuo XP; Chai ZF; Ji YH
    Acta Biochim Biophys Sin (Shanghai); 2004 Oct; 36(10):656-60. PubMed ID: 15483744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acylated toxin structure.
    Branton WD; Rudnick MS; Zhou Y; Eccleston ED; Fields GB; Bowers LD
    Nature; 1993 Oct; 365(6446):496-7. PubMed ID: 8413602
    [No Abstract]   [Full Text] [Related]  

  • 15. [Facts on venomous animals].
    Goyffon M
    Ann Pharm Fr; 1994; 52(2):99-109. PubMed ID: 7944185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of polypeptide compositions from individual Agelena orientalis spider venoms].
    Shliapnikov IuM; Kozlov SA; Fedorov AA; Grishin EV
    Bioorg Khim; 2010; 36(1):81-8. PubMed ID: 20386580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct cDNA cloning of novel conopeptide precursors of the O-superfamily.
    Kauferstein S; Melaun C; Mebs D
    Peptides; 2005 Mar; 26(3):361-7. PubMed ID: 15652641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Loxtox protein family in Loxosceles intermedia (Mello-Leitão) venom.
    Kalapothakis E; Chatzaki M; Gonçalves-Dornelas H; de Castro CS; Silvestre FG; Laborne FV; de Moura JF; Veiga SS; Chávez-Olórtegui C; Granier C; Barbaro KC
    Toxicon; 2007 Dec; 50(7):938-46. PubMed ID: 17825864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of agelenin, an insecticidal peptide isolated from the spider Agelena opulenta, and its structural similarities to insect-specific calcium channel inhibitors.
    Yamaji N; Sugase K; Nakajima T; Miki T; Wakamori M; Mori Y; Iwashita T
    FEBS Lett; 2007 Aug; 581(20):3789-94. PubMed ID: 17644092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drugs from the peptide venoms of marine cone shells.
    Lewis RJ; Bingham JP; Jones A; Alewood PF; Andrews PR
    Australas Biotechnol; 1994; 4(5):298-300. PubMed ID: 7765678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.