These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7823857)

  • 1. Applying bifurcation theory to enzyme kinetics.
    Hocker CG
    Methods Enzymol; 1994; 240():781-816. PubMed ID: 7823857
    [No Abstract]   [Full Text] [Related]  

  • 2. Approaches to kinetic studies on metal-activated enzymes.
    Morrison JF
    Methods Enzymol; 1979; 63():257-94. PubMed ID: 228154
    [No Abstract]   [Full Text] [Related]  

  • 3. Transitions between alternate ATP-producing and ATP-consuming stationary states in a reconstituted enzyme system containing phosphofructokinase.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1982; 41(5):415-24. PubMed ID: 6215809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of rabbit muscle phosphofructokinase.
    Kee A; Griffin CC
    Arch Biochem Biophys; 1972 Apr; 149(2):361-8. PubMed ID: 4269395
    [No Abstract]   [Full Text] [Related]  

  • 5. Non-linear dynamic phenomena in open reconstituted enzyme systems.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1979; 38(11-12):K25-33. PubMed ID: 233181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-jump study of the interaction of rabbit muscle phosphofructokinase with adenylyl imidodiphosphate and adenosine 5'-triphosphate.
    Wolfman NM; Storer AC; Hammes GG
    Biochemistry; 1979 Jun; 18(12):2451-6. PubMed ID: 156041
    [No Abstract]   [Full Text] [Related]  

  • 7. Selforganization of a glycolytic reconstituted enzyme system: alternate stable stationary states, hysteretic transitions and stabilization of the energy charge.
    Schellenberger W; Eschrich K; Hofmann E
    Adv Enzyme Regul; 1980; 19():257-84. PubMed ID: 6461225
    [No Abstract]   [Full Text] [Related]  

  • 8. Steady-state kinetic study of rabbit muscle phosphofructokinase.
    Goldhammer AR; Hammes GG
    Biochemistry; 1978 May; 17(10):1818-12. PubMed ID: 207301
    [No Abstract]   [Full Text] [Related]  

  • 9. Diminution of stationary enzyme activities at increases of pyruvate kinase concentration in a reconstituted enzyme system.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1983; 42(1):57-72. PubMed ID: 6224485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on adenosine triphosphate transphosphorylases. XIII. Kinetic properties of the crystalline rabbit muscle ATP-AMP transphorphorylase (adenylate kinase) and a comparison with the crystalline calf muscle and liver adenylate kinases.
    Hamada M; Kuby SA
    Arch Biochem Biophys; 1978 Oct; 190(2):772-9. PubMed ID: 214039
    [No Abstract]   [Full Text] [Related]  

  • 11. Tautomerism of 2-azidoadenine nucleotides. Effects on enzyme kinetics and photoaffinity labeling.
    Czarnecki JJ
    Biochim Biophys Acta; 1984 Jul; 800(1):41-51. PubMed ID: 6331519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-induced cold lability of rabbit skeletal muscle phosphofructokinase.
    Bock PE; Frieden C
    Biochemistry; 1974 Sep; 13(20):4191-6. PubMed ID: 4277765
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzyme millisecond conformational dynamics do not catalyze the chemical step.
    Pisliakov AV; Cao J; Kamerlin SC; Warshel A
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17359-64. PubMed ID: 19805169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple steady states and oscillatory behavior of a compartmentalized phosphofructokinase system.
    Hervagault JF; Duban MC; Kernevez JP; Thomas D
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5455-9. PubMed ID: 6225119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic effects of hexose 1,6-bisphosphates and fructose 2,6-bisphosphate on the activity of 6-phosphofructokinase purified from honey-bee flight muscle.
    Wegener G; Schmidt H; Leech AR; Newsholme EA
    Biochem J; 1986 Jun; 236(3):925-8. PubMed ID: 2947573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modeling of muscle phosphofructokinase kinetics.
    Waser MR; Garfinkel L; Kohn MC; Garfinkel D
    J Theor Biol; 1983 Jul; 103(2):295-312. PubMed ID: 6225913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillations in the phosphofructokinase--fructose 1,6-bisphosphatase cycle. II. Influence of fructose 1,6-bisphosphatase on the character of oscillatory states.
    Eschrich K; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1983; 42(6):609-21. PubMed ID: 6314995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the adenylate energy charge by sustained metabolic oscillations.
    Goldbeter A
    FEBS Lett; 1974 Aug; 43(3):327-30. PubMed ID: 4278197
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetics of creatine phosphokinase and adenylate kinase. A two-dimensional NMR analysis.
    Kantor HL; Ferretti JA; Balaban RS
    Biochim Biophys Acta; 1984 Sep; 789(2):128-35. PubMed ID: 6089892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.