BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7824274)

  • 1. scl, a gene frequently activated in human T cell leukaemia, does not induce lymphomas in transgenic mice.
    Robb L; Rasko JE; Bath ML; Strasser A; Begley CG
    Oncogene; 1995 Jan; 10(1):205-9. PubMed ID: 7824274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CD2-scl transgene alters the phenotype and frequency of T-lymphomas in N-ras transgenic or p53 deficient mice.
    Curtis DJ; Robb L; Strasser A; Begley CG
    Oncogene; 1997 Dec; 15(24):2975-83. PubMed ID: 9416841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SCL/TAL1 gene: roles in normal and malignant haematopoiesis.
    Robb L; Begley CG
    Bioessays; 1997 Jul; 19(7):607-13. PubMed ID: 9230693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCL, the gene implicated in human T-cell leukaemia, is oncogenic in a murine T-lymphocyte cell line.
    Elwood NJ; Cook WD; Metcalf D; Begley CG
    Oncogene; 1993 Nov; 8(11):3093-101. PubMed ID: 8414511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice.
    Aplan PD; Jones CA; Chervinsky DS; Zhao X; Ellsworth M; Wu C; McGuire EA; Gross KW
    EMBO J; 1997 May; 16(9):2408-19. PubMed ID: 9171354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice.
    Condorelli GL; Facchiano F; Valtieri M; Proietti E; Vitelli L; Lulli V; Huebner K; Peschle C; Croce CM
    Cancer Res; 1996 Nov; 56(22):5113-9. PubMed ID: 8912842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scid Thymocytes with TCRbeta gene rearrangements are targets for the oncogenic effect of SCL and LMO1 transgenes.
    Chervinsky DS; Lam DH; Melman MP; Gross KW; Aplan PD
    Cancer Res; 2001 Sep; 61(17):6382-7. PubMed ID: 11522630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCL and related hemopoietic helix-loop-helix transcription factors.
    Green AR; Begley CG
    Int J Cell Cloning; 1992 Sep; 10(5):269-76. PubMed ID: 1453013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of mice with bone marrow cells expressing the SCL gene is insufficient to cause leukemia.
    Elwood NJ; Begley CG
    Cell Growth Differ; 1995 Jan; 6(1):19-25. PubMed ID: 7718483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia.
    Baer R
    Semin Cancer Biol; 1993 Dec; 4(6):341-7. PubMed ID: 8142619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes.
    van Hamburg JP; de Bruijn MJ; Dingjan GM; Beverloo HB; Diepstraten H; Ling KW; Hendriks RW
    Mol Immunol; 2008 Jun; 45(11):3085-95. PubMed ID: 18471881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of lineage restricted haemopoietic transcription factors in cell hybrids.
    Murrell AM; Green AR
    Oncogene; 1995 Feb; 10(4):631-9. PubMed ID: 7862440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCL transcription factor and differential regulation of macrophage differentiation by LIF, OSM and IL-6.
    Begley CG
    Stem Cells; 1994; 12 Suppl 1():143-9; discussion 149-51. PubMed ID: 7696958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc.
    Vaillant F; Blyth K; Terry A; Bell M; Cameron ER; Neil J; Stewart M
    Oncogene; 1999 Nov; 18(50):7124-34. PubMed ID: 10597314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL.
    Shivdasani RA; Mayer EL; Orkin SH
    Nature; 1995 Feb; 373(6513):432-4. PubMed ID: 7830794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements.
    Göttgens B; McLaughlin F; Bockamp EO; Fordham JL; Begley CG; Kosmopoulos K; Elefanty AG; Green AR
    Oncogene; 1997 Nov; 15(20):2419-28. PubMed ID: 9395238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leukaemia -- a developmental perspective.
    Izraeli S
    Br J Haematol; 2004 Jul; 126(1):3-10. PubMed ID: 15198727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression.
    Herblot S; Steff AM; Hugo P; Aplan PD; Hoang T
    Nat Immunol; 2000 Aug; 1(2):138-44. PubMed ID: 11248806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythroid expression of the 'helix-loop-helix' gene, SCL.
    Green AR; Salvaris E; Begley CG
    Oncogene; 1991 Mar; 6(3):475-9. PubMed ID: 2011404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1.
    Zeuner A; Eramo A; Testa U; Felli N; Pelosi E; Mariani G; Srinivasula SM; Alnemri ES; Condorelli G; Peschle C; De Maria R
    Cell Death Differ; 2003 Aug; 10(8):905-13. PubMed ID: 12867998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.