BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7824440)

  • 1. [Micro-callus formation of spongiosa. An up to now underestimated repair mechanism of the skeletal system].
    Hahn M; Vogel M; Amling M; Grote HJ; Pösl M; Werner M; Delling G
    Pathologe; 1994 Oct; 15(5):297-302. PubMed ID: 7824440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcallus formations of the cancellous bone: a quantitative analysis of the human spine.
    Hahn M; Vogel M; Amling M; Ritzel H; Delling G
    J Bone Miner Res; 1995 Sep; 10(9):1410-6. PubMed ID: 7502714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pathological research on isolated microcallus formation in 576 vertebrae].
    Yu Y
    Zhonghua Bing Li Xue Za Zhi; 1995 Feb; 24(1):33-5. PubMed ID: 7781113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebral cancellous bone turn-over: microcallus and bridges in backscatter electron microscopy.
    Banse X; Devogelaer JP; Holmyard D; Grynpas M
    Micron; 2005; 36(7-8):710-4. PubMed ID: 16182552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular microfractures in the femoral head with osteoporosis: analysis of microcallus formations by synchrotron radiation micro CT.
    Okazaki N; Chiba K; Taguchi K; Nango N; Kubota S; Ito M; Osaki M
    Bone; 2014 Jul; 64():82-7. PubMed ID: 24705007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural heterogeneity within the axis: the main cause in the etiology of dens fractures. A histomorphometric analysis of 37 normal and osteoporotic autopsy cases.
    Amling M; Pösl M; Wening VJ; Ritzel H; Hahn M; Delling G
    J Neurosurg; 1995 Aug; 83(2):330-5. PubMed ID: 7616280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Recent concepts of the organization and structure of human trabecular bone--results of combined 2- and 3-dimensional analysis].
    Delling G
    Z Gesamte Inn Med; 1989 Sep; 44(18):536-40. PubMed ID: 2588724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of microcallus in human cancellous bone.
    Blackburn J; Hodgskinson R; Currey JD; Mason JE
    J Orthop Res; 1992 Mar; 10(2):237-46. PubMed ID: 1740742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative morphology of vertebral body cortical bone. Building block for noninvasive calculation of fracture threshold in osteoporosis].
    Ritzel H; Amling M; Hahn M; Maas R; Delling G
    Radiologe; 1998 Apr; 38(4):315-20. PubMed ID: 9622826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens.
    Ritzel H; Amling M; Pösl M; Hahn M; Delling G
    J Bone Miner Res; 1997 Jan; 12(1):89-95. PubMed ID: 9240730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spongiosa structure and polyostotic heterogeneity in osteoporosis. Mechanism of bone transformation, morphology, clinical significance].
    Ritzel H; Amling M; Vogel M; Pösl M; Hahn M; Werner M; Delling G
    Pathologe; 1996 Jan; 17(1):68-77. PubMed ID: 8685100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.
    Busse B; Hahn M; Soltau M; Zustin J; Püschel K; Duda GN; Amling M
    Bone; 2009 Dec; 45(6):1034-43. PubMed ID: 19679206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypothesis of microfractures by buckling theory of bone's trabeculas from vertebral bodies affected by osteoporosis.
    Ionovici N; Negru M; Grecu D; Vasilescu M; Mogoantă L; Bold A; Trăistaru R
    Rom J Morphol Embryol; 2009; 50(1):79-84. PubMed ID: 19221649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pathophysiology of osteoporosis].
    Delling G; Hahn M; Vogel M
    Radiologe; 1993 Aug; 33(8):433-8. PubMed ID: 8372168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of trabecular microcallus formation in the vertebral body and the femoral neck.
    Cheng XG; Nicholson PH; Lowet G; Boonen S; Sun Y; Rüegsegger P; Müller R; Dequeker J
    Calcif Tissue Int; 1997 May; 60(5):479-84. PubMed ID: 9115168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology.
    Amling M; Grote HJ; Pösl M; Hahn M; Delling G
    Bone Miner; 1994 Dec; 27(3):193-208. PubMed ID: 7535140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcalluses of the trabeculae in lumbar vertebrae and their relation to the bone mineral content.
    Hansson T; Roos B
    Spine (Phila Pa 1976); 1981; 6(4):375-80. PubMed ID: 7280826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional analysis of the spine in autopsy cases with renal osteodystrophy.
    Amling M; Grote HJ; Vogel M; Hahn M; Delling G
    Kidney Int; 1994 Sep; 46(3):733-43. PubMed ID: 7996795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cranio-caudal asymmetries in trabecular architecture reflect vertebral fracture patterns.
    Yang G; Battié MC; Boyd SK; Videman T; Wang Y
    Bone; 2017 Feb; 95():102-107. PubMed ID: 27876503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of trabecular morphology in the etiology of age-related vertebral fractures.
    Snyder BD; Piazza S; Edwards WT; Hayes WC
    Calcif Tissue Int; 1993; 53 Suppl 1():S14-22. PubMed ID: 8275369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.