These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Antidepressant drug-induced hypothalamic cooling in Syrian hamsters. Duncan WC; Johnson KA; Wehr TA Neuropsychopharmacology; 1995 Feb; 12(1):17-37. PubMed ID: 7766283 [TBL] [Abstract][Full Text] [Related]
4. Chronic clorgyline treatment of Syrian hamsters: an analysis of effects on the circadian pacemaker. Duncan WC; Tamarkin L; Sokolove PG; Wehr TA J Biol Rhythms; 1988; 3(4):305-22. PubMed ID: 2979641 [TBL] [Abstract][Full Text] [Related]
5. Effects of chronic administration and withdrawal of antidepressant agents on circadian activity rhythms in rats. Wollnik F Pharmacol Biochem Behav; 1992 Oct; 43(2):549-61. PubMed ID: 1438492 [TBL] [Abstract][Full Text] [Related]
6. Neonatal scopolamine or antidepressant treatment: effect on development of hamster circadian rhythms. Klemfuss H; Gillin JC Pharmacol Biochem Behav; 1998 Feb; 59(2):369-73. PubMed ID: 9476983 [TBL] [Abstract][Full Text] [Related]
7. Effects of imipramine on circadian rhythms in the golden hamster. Refinetti R; Menaker M Pharmacol Biochem Behav; 1993 May; 45(1):27-33. PubMed ID: 8516369 [TBL] [Abstract][Full Text] [Related]
8. Disruption of the activity-rest cycle by MAOI treatment: dependence on light and a secondary visual pathway to the circadian pacemaker. Duncan WC; Johnson KA; Sutin E; Wehr TA Brain Res Bull; 1998 Mar; 45(5):457-65. PubMed ID: 9570715 [TBL] [Abstract][Full Text] [Related]
9. 5-HT agonist-induced phase-advances of the circadian pacemaker are diminished by chronic antidepressant drug treatment. Duncan WC; Johnson KA; Wehr TA Brain Res; 1999 Jan; 815(1):126-30. PubMed ID: 9974132 [TBL] [Abstract][Full Text] [Related]
10. Positive allosteric modulators at GABAB receptors exert intrinsic actions and enhance the influence of baclofen on light-induced phase shifts of hamster circadian activity rhythms. Gannon RL; Millan MJ Pharmacol Biochem Behav; 2011 Oct; 99(4):712-7. PubMed ID: 21756929 [TBL] [Abstract][Full Text] [Related]
11. Estradiol shortens the period of hamster circadian rhythms. Morin LP; Fitzgerald KM; Zucker I Science; 1977 Apr; 196(4287):305-7. PubMed ID: 557840 [TBL] [Abstract][Full Text] [Related]
12. Decreased sensitivity to light of the photic entrainment pathway during chronic clorgyline and lithium treatments. Duncan WC; Johnson KA; Wehr TA J Biol Rhythms; 1998 Aug; 13(4):330-46. PubMed ID: 9711508 [TBL] [Abstract][Full Text] [Related]
13. Effects of fluoxetine and olfactory bulbectomy on mouse circadian activity rhythms. Possidente B; Lumia AR; McGinnis MY; Rapp M; McEldowney S Brain Res; 1996 Mar; 713(1-2):108-13. PubMed ID: 8724981 [TBL] [Abstract][Full Text] [Related]
14. Ethanol and circadian rhythms in the Syrian hamster: effects on entrained phase, reentrainment rate, and period. Mistlberger RE; Nadeau J Pharmacol Biochem Behav; 1992 Sep; 43(1):159-65. PubMed ID: 1409799 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Gannon RL; Millan MJ Psychopharmacology (Berl); 2007 Dec; 195(3):325-32. PubMed ID: 17694388 [TBL] [Abstract][Full Text] [Related]
16. Effect of arousing stimuli on circulating corticosterone and the circadian rhythms of luteinizing hormone (LH) surges and locomotor activity in estradiol-treated ovariectomized (ovx+EB) Syrian hamsters. Legan SJ; Peng X; Yun C; Duncan MJ Horm Behav; 2015 Jun; 72():28-38. PubMed ID: 25958077 [TBL] [Abstract][Full Text] [Related]