These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7824685)

  • 1. Training redundant artificial neural networks: imposing biology on technology.
    Medler DA; Dawson MR
    Psychol Res; 1994; 57(1):54-62. PubMed ID: 7824685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.
    Su F; Yuan P; Wang Y; Zhang C
    Protein Cell; 2016 Oct; 7(10):735-748. PubMed ID: 27502185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of artificial neural networks in medical science.
    Patel JL; Goyal RK
    Curr Clin Pharmacol; 2007 Sep; 2(3):217-26. PubMed ID: 18690868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational advantages of reverberating loops for sensorimotor learning.
    Fortney K; Tweed DB
    Neural Comput; 2012 Mar; 24(3):611-34. PubMed ID: 22091669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting effects of motor and visual spatial learning tasks on dendritic arborization and spine density in rats.
    Kolb B; Cioe J; Comeau W
    Neurobiol Learn Mem; 2008 Sep; 90(2):295-300. PubMed ID: 18547826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.
    Fei Y; Hu J; Li WQ; Wang W; Zong GQ
    J Thromb Haemost; 2017 Mar; 15(3):439-445. PubMed ID: 27960048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification.
    Baldwin CL; Penaranda BN
    Neuroimage; 2012 Jan; 59(1):48-56. PubMed ID: 21835243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Spiking Neural Networks for Solving Supervised Classification Problems.
    López-Vázquez G; Ornelas-Rodriguez M; Espinal A; Soria-Alcaraz JA; Rojas-Domínguez A; Puga-Soberanes HJ; Carpio JM; Rostro-Gonzalez H
    Comput Intell Neurosci; 2019; 2019():4182639. PubMed ID: 31049050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.
    Liu Y; Yang J; Huang Y; Xu L; Li S; Qi M
    Comput Intell Neurosci; 2015; 2015():297672. PubMed ID: 26681933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants.
    Diamond A; Zola-Morgan S; Squire LR
    Behav Neurosci; 1989 Jun; 103(3):526-37. PubMed ID: 2736067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of redundant neural network activation during the performance of a task: a functional model applied to problem-solving strategies.
    Gupta SK
    Med Hypotheses; 1999 Jan; 52(1):9-12. PubMed ID: 10342663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of patients with cardiovascular disease by artificial neural networks.
    Baldassarre D; Grossi E; Buscema M; Intraligi M; Amato M; Tremoli E; Pustina L; Castelnuovo S; Sanvito S; Gerosa L; Sirtori CR
    Ann Med; 2004; 36(8):630-40. PubMed ID: 15768835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network detects human uncertainty.
    Hramov AE; Frolov NS; Maksimenko VA; Makarov VV; Koronovskii AA; Garcia-Prieto J; Antón-Toro LF; Maestú F; Pisarchik AN
    Chaos; 2018 Mar; 28(3):033607. PubMed ID: 29604631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural representations for sensory-motor control, I: Head-centered 3-D target positions from opponent eye commands.
    Greve D; Grossberg S; Guenther F; Bullock D
    Acta Psychol (Amst); 1993 Mar; 82(1-3):115-38. PubMed ID: 8475762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.
    Ihme M; Marsden AL; Pitsch H
    Neural Comput; 2008 Feb; 20(2):573-601. PubMed ID: 18045024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What can robots tell us about brains? A synthetic approach towards the study of learning and problem solving.
    Voegtlin T; Verschure PF
    Rev Neurosci; 1999; 10(3-4):291-310. PubMed ID: 10526893
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.