These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7825385)

  • 21. [The blood glucose content in newborn rats depending on level and pattern of spontaneous motor activity].
    Kuznetsov SV; Selina EN; Kuznetsova NN
    Zh Evol Biokhim Fiziol; 2011; 47(4):318-24. PubMed ID: 21938915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Periodic phenomenon in the ECoG of newborn rat pups and its correlation with spontaneous motor activity].
    Dmitrieva LE; Gavriuchenkova VS
    Zh Evol Biokhim Fiziol; 1989; 25(1):60-6. PubMed ID: 2728690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of hindbrain structures on autogenous periodic motor activity in the rat pup].
    Elshina MA; Bursian AV
    Zh Evol Biokhim Fiziol; 1985; 21(4):384-9. PubMed ID: 4050213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.
    Liu J; Akay T; Hedlund PB; Pearson KG; Jordan LM
    J Neurophysiol; 2009 Jul; 102(1):337-48. PubMed ID: 19458153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhythmic motor activity in thin transverse slice preparations of the fetal rat spinal cord.
    Nakayama K; Nishimaru H; Kudo N
    J Neurophysiol; 2004 Jul; 92(1):648-52. PubMed ID: 15028747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery, innervation profile, and contractile properties of reinnervating fast muscles following postnatal nerve crush and administration of L-Dopa.
    Grigoriadis N; Albani M; Simeonidou C; Guiba-Tziampiri O
    Brain Res Dev Brain Res; 2004 Oct; 153(1):79-87. PubMed ID: 15464220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation by p-chloroamphetamine of the spinal ejaculatory pattern generator in anaesthetized male rats.
    Stafford SA; Bowery NG; Tang K; Coote JH
    Neuroscience; 2006 Jul; 140(3):1031-40. PubMed ID: 16580147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of sympathetic, respiratory and somatomotor outflow by an intraspinal pattern generator.
    Goodchild AK; van Deurzen BT; Hildreth CM; Pilowsky PM
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):447-53. PubMed ID: 18307739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for the presence and functioning of the spinal generator for ejaculation in the neonatal male rat.
    Carro-Juárez M; Rodríguez-Manzo G
    Int J Impot Res; 2005; 17(3):270-6. PubMed ID: 15703769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neostigmine-induced characteristics of spontaneous activities and evoked muscle potentials in rat gastrocnemius and soleus muscles.
    Uramoto I; Watanabe K; Totsuka T
    Electromyogr Clin Neurophysiol; 1992; 32(4-5):163-9. PubMed ID: 1600881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
    Timoszyk WK; De Leon RD; London N; Roy RR; Edgerton VR; Reinkensmeyer DJ
    J Neurophysiol; 2002 Dec; 88(6):3108-17. PubMed ID: 12466434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhythmic neuronal discharge in the medulla and spinal cord of fetal rats in the absence of synaptic transmission.
    Ren J; Momose-Sato Y; Sato K; Greer JJ
    J Neurophysiol; 2006 Jan; 95(1):527-34. PubMed ID: 16148265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Damage to the catecholaminergic system causes a slowing in the formation of early behavioral reactions in rats].
    Podkletnova IM; Alkho KhE
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(5):1023-8. PubMed ID: 8560920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The characteristics of the restructuring of the circadian dynamics in rat motor activity in response to a phase shift in the photoperiod in the experimental modelling of depression].
    Baturin VA; Arushanian EB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(3):604-9. PubMed ID: 7941725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [2 stages in the development of spontaneous motor activity in the early postnatal ontogeny of rats].
    Bursian AV; Dmitrieva LE
    Zh Evol Biokhim Fiziol; 1994; 30(2):208-16. PubMed ID: 7817656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG activity of three rat hindlimb muscles during microgravity and hypergravity phase of parabolic flight.
    Leterme D; Falempin M
    Aviat Space Environ Med; 1998 Nov; 69(11):1065-70. PubMed ID: 9819163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.