These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 7826350)
1. Multiple substitutions at position 104 of beta-lactamase TEM-1: assessing the role of this residue in substrate specificity. Petit A; Maveyraud L; Lenfant F; Samama JP; Labia R; Masson JM Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):33-40. PubMed ID: 7826350 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of beta-lactamase TEM-1. Investigating the potential role of specific residues on the activity of Pseudomonas-specific enzymes. Lenfant F; Petit A; Labia R; Maveyraud L; Samama JP; Masson JM Eur J Biochem; 1993 Nov; 217(3):939-46. PubMed ID: 8223651 [TBL] [Abstract][Full Text] [Related]
3. Replacement of lysine 234 affects transition state stabilization in the active site of beta-lactamase TEM1. Lenfant F; Labia R; Masson JM J Biol Chem; 1991 Sep; 266(26):17187-94. PubMed ID: 1910040 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis at the active site of Escherichia coli TEM-1 beta-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. Delaire M; Labia R; Samama JP; Masson JM J Biol Chem; 1992 Oct; 267(29):20600-6. PubMed ID: 1400382 [TBL] [Abstract][Full Text] [Related]
5. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. Palzkill T; Botstein D J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749 [TBL] [Abstract][Full Text] [Related]
6. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. Petrosino JF; Palzkill T J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154 [TBL] [Abstract][Full Text] [Related]
7. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062 [TBL] [Abstract][Full Text] [Related]
8. Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Sowek JA; Singer SB; Ohringer S; Malley MF; Dougherty TJ; Gougoutas JZ; Bush K Biochemistry; 1991 Apr; 30(13):3179-88. PubMed ID: 1901218 [TBL] [Abstract][Full Text] [Related]
9. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. Brown NG; Shanker S; Prasad BV; Palzkill T J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041 [TBL] [Abstract][Full Text] [Related]
10. Substitution of Met-69 by Ala or Gly in TEM-1 beta-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors. Madec S; Blin C; Krishnamoorthy R; Picard B; Chaibi el B; Fouchereau-Péron M; Labia R FEMS Microbiol Lett; 2002 May; 211(1):13-6. PubMed ID: 12052544 [TBL] [Abstract][Full Text] [Related]
11. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 beta-lactamase hydrolysing third-generation cephalosporins. Bouthors AT; Dagoneau-Blanchard N; Naas T; Nordmann P; Jarlier V; Sougakoff W Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1443-9. PubMed ID: 9494118 [TBL] [Abstract][Full Text] [Related]
12. Probing the active site of beta-lactamase R-TEM1 by informational suppression. Lenfant F; Labia R; Masson JM Biochimie; 1990; 72(6-7):495-503. PubMed ID: 2124150 [TBL] [Abstract][Full Text] [Related]
13. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
14. A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. Soeung V; Lu S; Hu L; Judge A; Sankaran B; Prasad BVV; Palzkill T J Biol Chem; 2020 Dec; 295(52):18239-18255. PubMed ID: 33109613 [TBL] [Abstract][Full Text] [Related]
15. The asparagine to aspartic acid substitution at position 276 of TEM-35 and TEM-36 is involved in the beta-lactamase resistance to clavulanic acid. Saves I; Burlet-Schiltz O; Swarén P; Lefèvre F; Masson JM; Promé JC; Samama JP J Biol Chem; 1995 Aug; 270(31):18240-5. PubMed ID: 7629142 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis on TEM-1 beta-lactamase: role of Glu166 in catalysis and substrate binding. Delaire M; Lenfant F; Labia R; Masson JM Protein Eng; 1991 Oct; 4(7):805-10. PubMed ID: 1798703 [TBL] [Abstract][Full Text] [Related]
17. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins. Shimizu-Ibuka A; Matsuzawa H; Sakai H Biochemistry; 2004 Dec; 43(50):15737-45. PubMed ID: 15595829 [TBL] [Abstract][Full Text] [Related]
18. ENDOR structural characterization of a catalytically competent acylenzyme reaction intermediate of wild-type TEM-1 beta-lactamase confirms glutamate-166 as the base catalyst. Mustafi D; Sosa-Peinado A; Makinen MW Biochemistry; 2001 Feb; 40(8):2397-409. PubMed ID: 11327860 [TBL] [Abstract][Full Text] [Related]
19. Structure-function studies of arginine at position 276 in CTX-M beta-lactamases. Pérez-Llarena FJ; Cartelle M; Mallo S; Beceiro A; Pérez A; Villanueva R; Romero A; Bonnet R; Bou G J Antimicrob Chemother; 2008 Apr; 61(4):792-7. PubMed ID: 18281307 [TBL] [Abstract][Full Text] [Related]
20. Mutations altering substrate specificity in OHIO-1, and SHV-1 family beta-lactamase. Shlaes DM; Currie-McCumber C Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):411-5. PubMed ID: 1599426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]