BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 7826625)

  • 1. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of the N- and C-terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase II.
    Lei L; Ren D; Finkelstein A; Burton ZF
    Mol Cell Biol; 1998 Apr; 18(4):2130-42. PubMed ID: 9528785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed.
    Persengiev SP; Zhu X; Dixit BL; Maston GA; Kittler EL; Green MR
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14887-91. PubMed ID: 14634207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein.
    Kokubo T; Swanson MJ; Nishikawa JI; Hinnebusch AG; Nakatani Y
    Mol Cell Biol; 1998 Feb; 18(2):1003-12. PubMed ID: 9447997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain structure of the NRIF3 family of coregulators suggests potential dual roles in transcriptional regulation.
    Li D; Wang F; Samuels HH
    Mol Cell Biol; 2001 Dec; 21(24):8371-84. PubMed ID: 11713274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The TATA-binding protein (TBP) from the human fungal pathogen Candida albicans can complement defects in human and yeast TBPs.
    Leng P; Carter PE; Brown AJ
    J Bacteriol; 1998 Apr; 180(7):1771-6. PubMed ID: 9537374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast.
    Babokhov M; Mosaheb MM; Baker RW; Fuchs SM
    G3 (Bethesda); 2018 May; 8(5):1593-1601. PubMed ID: 29523636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-competition for TATA-binding protein between TATA boxes of the selenocysteine tRNA[Ser]Sec promoter and RNA polymerase II promoters.
    Park JM; Hatfield DL; Lee BJ
    Mol Cells; 1997 Feb; 7(1):72-7. PubMed ID: 9085268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions.
    Sánchez-Alvarez M; Goldstrohm AC; Garcia-Blanco MA; Suñé C
    Mol Cell Biol; 2006 Jul; 26(13):4998-5014. PubMed ID: 16782886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel yeast protein influencing the response of RNA polymerase II to transcriptional activators.
    Emili A; Kobayashi R; Ingles CJ
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11122-7. PubMed ID: 9736700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription.
    Castañeda AF; Didychuk AL; Louder RK; McCollum CO; Davis ZH; Nogales E; Glaunsinger BA
    PLoS Pathog; 2020 Sep; 16(9):e1008843. PubMed ID: 32886723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo.
    Rosonina E; Ip JY; Calarco JA; Bakowski MA; Emili A; McCracken S; Tucker P; Ingles CJ; Blencowe BJ
    Mol Cell Biol; 2005 Aug; 25(15):6734-46. PubMed ID: 16024807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage.
    Rosonina E; Blencowe BJ
    RNA; 2004 Apr; 10(4):581-9. PubMed ID: 15037767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II.
    Suh H; Ficarro SB; Kang UB; Chun Y; Marto JA; Buratowski S
    Mol Cell; 2016 Jan; 61(2):297-304. PubMed ID: 26799764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.
    Goldstrohm AC; Albrecht TR; Suñé C; Bedford MT; Garcia-Blanco MA
    Mol Cell Biol; 2001 Nov; 21(22):7617-28. PubMed ID: 11604498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II.
    Keogh MC; Podolny V; Buratowski S
    Mol Cell Biol; 2003 Oct; 23(19):7005-18. PubMed ID: 12972617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3' cleavage.
    Ryan K; Murthy KG; Kaneko S; Manley JL
    Mol Cell Biol; 2002 Mar; 22(6):1684-92. PubMed ID: 11865048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II.
    Patturajan M; Wei X; Berezney R; Corden JL
    Mol Cell Biol; 1998 Apr; 18(4):2406-15. PubMed ID: 9528809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Saccharomyces cerevisiae SR protein Npl3 interacts with hyperphosphorylated CTD of RNA Polymerase II.
    Gupta A; Kumar A; Singh N; Sudarshan N; Studitsky VM; Zhang KYJ; Akhtar MS
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127541. PubMed ID: 37858651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Regulations of the Preinitiation Complex Formation and Elongating RNA Polymerase II by an E3 Ubiquitin Ligase, San1.
    Barman P; Sen R; Kaja A; Ferdoush J; Guha S; Govind CK; Bhaumik SR
    Mol Cell Biol; 2022 Jan; 42(1):e0036821. PubMed ID: 34661445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.