These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7827056)

  • 1. Stabilization of helical domains in short peptides using hydrophobic interactions.
    Albert JS; Hamilton AD
    Biochemistry; 1995 Jan; 34(3):984-90. PubMed ID: 7827056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids.
    Pérez-Gil J; Cruz A; Casals C
    Biochim Biophys Acta; 1993 Jul; 1168(3):261-70. PubMed ID: 8323965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study.
    Roccatano D; Colombo G; Fioroni M; Mark AE
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12179-84. PubMed ID: 12196631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two different regimes in alcohol-induced coil-helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations.
    Ohgi H; Imamura H; Sumi T; Nishikawa K; Koga Y; Westh P; Morita T
    Phys Chem Chem Phys; 2021 Mar; 23(10):5760-5772. PubMed ID: 33481971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical Formation Initiates Solvent-Dependent Unfolding and β-sheet Formation in a Model Helical Peptide.
    Owen MC; Strodel B; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2016 Jun; 120(22):4878-89. PubMed ID: 27169334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic solvation in aqueous trifluoroethanol solution.
    Bodkin MJ; Goodfellow JM
    Biopolymers; 1996 Jul; 39(1):43-50. PubMed ID: 8924626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trifluoroethanol may form a solvent matrix for assisted hydrophobic interactions between peptide side chains.
    Reiersen H; Rees AR
    Protein Eng; 2000 Nov; 13(11):739-43. PubMed ID: 11161104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: a (1)H and (13)C nuclear magnetic resonance conformational study of designed peptides.
    Santiveri CM; Pantoja-Uceda D; Rico M; Jiménez MA
    Biopolymers; 2005 Oct; 79(3):150-62. PubMed ID: 16078190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of helical propensities from trifluoroethanol titration curves.
    Jasanoff A; Fersht AR
    Biochemistry; 1994 Mar; 33(8):2129-35. PubMed ID: 8117669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. About TFE: Old and New Findings.
    Vincenzi M; Mercurio FA; Leone M
    Curr Protein Pept Sci; 2019; 20(5):425-451. PubMed ID: 30767740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformations of hydrophobic peptides in trifluoroethanol, water and in solid state: a circular dichroism and Fourier Transform Infrared study.
    Jagannadham MV; Krishnamurthy AS; Husain S; Nagaraj R
    Indian J Biochem Biophys; 1999 Dec; 36(6):422-8. PubMed ID: 10844996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular thermodynamics of trifluoroethanol-induced helix formation: analysis of the solvation structure and free energy by the 3D-RISM theory.
    Imai T; Kovalenko A; Hirata F; Kidera A
    Interdiscip Sci; 2009 Jun; 1(2):156-60. PubMed ID: 20640830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.
    Goyal B; Srivastava KR; Durani S
    J Pept Sci; 2017 Jun; 23(6):431-437. PubMed ID: 28425159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1.
    Myers JK; Pace CN; Scholtz JM
    Protein Sci; 1998 Feb; 7(2):383-8. PubMed ID: 9521115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of human and salmon calcitonin secondary structure in solutions with low dielectric constants.
    Arvinte T; Drake AF
    J Biol Chem; 1993 Mar; 268(9):6408-14. PubMed ID: 8454613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the stability of a 22-residue alpha-helix in water and 30% trifluoroethanol.
    Van Buuren AR; Berendsen HJ
    Biopolymers; 1993 Aug; 33(8):1159-66. PubMed ID: 8364151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: an isotope-edited FTIR study.
    Starzyk A; Barber-Armstrong W; Sridharan M; Decatur SM
    Biochemistry; 2005 Jan; 44(1):369-76. PubMed ID: 15628879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.