These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7827071)

  • 1. Second derivative spectroscopy of enolase at high hydrostatic pressure: an approach to the study of macromolecular interactions.
    Kornblatt JA; Kornblatt MJ; Hoa GH
    Biochemistry; 1995 Jan; 34(4):1218-23. PubMed ID: 7827071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of hydrostatic pressure to produce 'native' monomers of yeast enolase.
    Kornblatt MJ; Lange R; Balny C
    Eur J Biochem; 2004 Oct; 271(19):3897-904. PubMed ID: 15373835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can monomers of yeast enolase have enzymatic activity?
    Kornblatt MJ; Lange R; Balny C
    Eur J Biochem; 1998 Feb; 251(3):775-80. PubMed ID: 9490051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of sodium perchlorate on rabbit muscle enolase--Spectral characterization of the monomer.
    Kornblatt MJ; Al-Ghanim A; Kornblatt JA
    Eur J Biochem; 1996 Feb; 236(1):78-84. PubMed ID: 8617289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of water in the dissociation of enolase, a dimeric enzyme.
    Kornblatt MJ; Kornblatt JA; Hui Bon Hoa G
    Arch Biochem Biophys; 1993 Nov; 306(2):495-500. PubMed ID: 8215454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-induced reversible dissociation of enolase.
    Paladini AA; Weber G
    Biochemistry; 1981 Apr; 20(9):2587-93. PubMed ID: 7236623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivative spectrophotometry of dimer and monomer of enolase.
    Kulig E; Wolny M
    Int J Biochem; 1988; 20(1):79-85. PubMed ID: 3342926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of alpha-subunits on the high-pressure stability of apo and holo beta 2-subunits in the bienzyme complex tryptophan synthase from Escherichia coli.
    Sindern S; van Eldik R; Bartholmes P
    Biochemistry; 1995 Feb; 34(6):1959-67. PubMed ID: 7849055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential susceptibility of Plasmodium falciparum versus yeast and mammalian enolases to dissociation into active monomers.
    Pal-Bhowmick I; Krishnan S; Jarori GK
    FEBS J; 2007 Apr; 274(8):1932-45. PubMed ID: 17371507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy.
    Schroeder HR; McOdimba FA; Guillemette JG; Kornblatt JA
    Biochem Cell Biol; 1997; 75(3):191-7. PubMed ID: 9404638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy.
    Mach H; Middaugh CR
    Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus.
    Kornblatt JA; Quiros V; Kornblatt MJ
    PLoS One; 2015; 10(8):e0135754. PubMed ID: 26287818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of yeast enolase into active monomers.
    Keresztes-Nagy S; Orman R
    Biochemistry; 1971 Jun; 10(13):2506-8. PubMed ID: 5557797
    [No Abstract]   [Full Text] [Related]  

  • 14. The use of absorption optics to measure dissociation of yeast enolase into enzymatically active monomers.
    Holleman WH
    Biochim Biophys Acta; 1973 Nov; 327(1):176-85. PubMed ID: 4770740
    [No Abstract]   [Full Text] [Related]  

  • 15. The individual tyrosines of proteins: their spectra may or may not differ from those in water or other solvents.
    Kornblatt JA; Kornblatt MJ; Lange R; Mombelli E; Guillemette JG
    Biochim Biophys Acta; 1999 Apr; 1431(1):238-48. PubMed ID: 10209296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of yeast hexokinase by hydrostatic pressure.
    Ruan K; Weber G
    Biochemistry; 1988 May; 27(9):3295-301. PubMed ID: 3291947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cofactor pyridoxal 5'-phosphate on reversible high-pressure denaturation of isolated beta 2 dimer of tryptophan synthase bienzyme complex from Escherichia coli.
    Seifert T; Bartholmes P; Jaenicke R
    Biochemistry; 1985 Jan; 24(2):339-45. PubMed ID: 3884040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of osmotic and hydrostatic pressures on macromolecular systems.
    Kornblatt JA; Kornblatt MJ
    Biochim Biophys Acta; 2002 Mar; 1595(1-2):30-47. PubMed ID: 11983385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pressure-induced inactivation of mammalian enolases is accompanied by dissociation of the dimeric enzyme.
    Kornblatt MJ; Hui Bon Hoa G
    Arch Biochem Biophys; 1987 Jan; 252(1):277-83. PubMed ID: 3101597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of His159 in yeast enolase catalysis.
    Vinarov DA; Nowak T
    Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.