These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7828065)

  • 1. A set of Alu-free frequent decamers from mammalian genomes enriched in transcription factor signals.
    Gambari R; Volinia S; Nesti C; Scapoli C; Barrai I
    Comput Appl Biosci; 1994 Sep; 10(5):501-8. PubMed ID: 7828065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a set of frequent decanucleotides in plants and in animals.
    Scapoli C; Rodríguez-Larralde A; Volinia S; Beretta M; Barrai I
    Comput Appl Biosci; 1994 Sep; 10(5):465-70. PubMed ID: 7828060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A set of viral DNA decamers enriched in transcription control signals.
    Volinia S; Scapoli C; Gambari R; Barale R; Barrai I
    Nucleic Acids Res; 1991 Jul; 19(13):3733-40. PubMed ID: 1906607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of oligonucleotide sets with transcription control signals. II: Mammalian DNA.
    Volinia S; Scapoli C; Gambari R; Barale R; Barrai I
    Nucleic Acids Res; 1992 Feb; 20(3):551-6. PubMed ID: 1741289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters.
    Oei SL; Babich VS; Kazakov VI; Usmanova NM; Kropotov AV; Tomilin NV
    Genomics; 2004 May; 83(5):873-82. PubMed ID: 15081116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of oligonucleotide sets with transcription control signals. III: DNA from non-mammalian vertebrates.
    Scapoli C; Rodriguez-Larralde A; Volinia S; Barrai I
    Comput Appl Biosci; 1993 Dec; 9(6):647-51. PubMed ID: 8143149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes.
    Stallings RL; Ford AF; Nelson D; Torney DC; Hildebrand CE; Moyzis RK
    Genomics; 1991 Jul; 10(3):807-15. PubMed ID: 1909685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers.
    Norris J; Fan D; Aleman C; Marks JR; Futreal PA; Wiseman RW; Iglehart JD; Deininger PL; McDonnell DP
    J Biol Chem; 1995 Sep; 270(39):22777-82. PubMed ID: 7559405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of some potential hormone response elements in human genes with the Alu family repeats.
    Babich V; Aksenov N; Alexeenko V; Oei SL; Buchlow G; Tomilin N
    Gene; 1999 Nov; 239(2):341-9. PubMed ID: 10548736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary selection against change in many Alu repeat sequences interspersed through primate genomes.
    Britten RJ
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5992-6. PubMed ID: 8016103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element.
    Vansant G; Reynolds WF
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8229-33. PubMed ID: 7667273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes.
    Polak P; Domany E
    BMC Genomics; 2006 Jun; 7():133. PubMed ID: 16740159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species.
    Chandrashekar DS; Dey P; Acharya KK
    PLoS One; 2015; 10(7):e0133647. PubMed ID: 26208093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation and transpositional selection of active SINE sequences.
    Schmid C; Maraia R
    Curr Opin Genet Dev; 1992 Dec; 2(6):874-82. PubMed ID: 1335809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences.
    Sinnett D; Richer C; Deragon JM; Labuda D
    J Mol Biol; 1992 Aug; 226(3):689-706. PubMed ID: 1507221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased concentration of some transcription factor binding sites in human retroposons of the Alu family.
    Kazakov VI; Tomilin NV
    Genetica; 1996 Jan; 97(1):15-22. PubMed ID: 8851879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha.
    Jurka J; Kapitonov VV; Klonowski P; Walichiewicz J; Smit AF
    Genetica; 1996-1997; 98(3):235-47. PubMed ID: 9204548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential insertion of Alu family repeats into specific genomic sites of higher primates.
    Bailey AD; Shen CK
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7205-9. PubMed ID: 8394013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rabbit C family of short, interspersed repeats. Nucleotide sequence determination and transcriptional analysis.
    Cheng JF; Printz R; Callaghan T; Shuey D; Hardison RC
    J Mol Biol; 1984 Jun; 176(1):1-20. PubMed ID: 6204060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alu repeats: a source for the genesis of primate microsatellites.
    Arcot SS; Wang Z; Weber JL; Deininger PL; Batzer MA
    Genomics; 1995 Sep; 29(1):136-44. PubMed ID: 8530063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.