These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7828069)

  • 1. A consensus procedure for predicting the location of alpha-helical transmembrane segments in proteins.
    Parodi LA; Granatir CA; Maggiora GM
    Comput Appl Biosci; 1994 Sep; 10(5):527-35. PubMed ID: 7828069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method for predicting transmembrane alpha helices with better accuracy.
    Gromiha MM
    Protein Eng; 1999 Jul; 12(7):557-61. PubMed ID: 10436081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HTP: a neural network-based method for predicting the topology of helical transmembrane domains in proteins.
    Fariselli P; Casadio R
    Comput Appl Biosci; 1996 Feb; 12(1):41-8. PubMed ID: 8670618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preference functions for prediction of membrane-buried helices in integral membrane proteins.
    Juretić D; Zucić D; Lucić B; Trinajstić N
    Comput Chem; 1998 Jun; 22(4):279-94. PubMed ID: 9680689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting alpha-helix and beta-strand segments of globular proteins.
    Solovyev VV; Salamov AA
    Comput Appl Biosci; 1994 Dec; 10(6):661-9. PubMed ID: 7704665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the transmembrane secondary structure of ligand-gated ion channels.
    Bertaccini E; Trudell JR
    Protein Eng; 2002 Jun; 15(6):443-54. PubMed ID: 12082162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadratic minimization of predictors for protein secondary structure. Application to transmembrane alpha-helices.
    Edelman J
    J Mol Biol; 1993 Jul; 232(1):165-91. PubMed ID: 7687296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.
    Zaki N; Bouktif S; Lazarova-Molnar S
    PLoS One; 2011; 6(7):e21821. PubMed ID: 21814556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous prediction of protein secondary structure and transmembrane spans.
    Leman JK; Mueller R; Karakas M; Woetzel N; Meiler J
    Proteins; 2013 Jul; 81(7):1127-40. PubMed ID: 23349002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New alignment strategy for transmembrane proteins.
    Cserzö M; Bernassau JM; Simon I; Maigret B
    J Mol Biol; 1994 Oct; 243(3):388-96. PubMed ID: 7966267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins: I. Hydrophobic properties of transmembrane segments of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Vergoten G; Modyanov NN
    J Protein Chem; 1992 Dec; 11(6):665-75. PubMed ID: 1334655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins.
    Granseth E; Viklund H; Elofsson A
    Bioinformatics; 2006 Jul; 22(14):e191-6. PubMed ID: 16873471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles governing amino acid composition of integral membrane proteins: application to topology prediction.
    Tusnády GE; Simon I
    J Mol Biol; 1998 Oct; 283(2):489-506. PubMed ID: 9769220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of transmembrane alpha-helical segments with environmental profiles.
    Efremov RG; Vergoten G
    Protein Eng; 1996 Mar; 9(3):253-63. PubMed ID: 8736492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation.
    Le Novère N; Corringer PJ; Changeux JP
    Biophys J; 1999 May; 76(5):2329-45. PubMed ID: 10233052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.