BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1078 related articles for article (PubMed ID: 7828218)

  • 21. Vanadate-induced activation of activator protein-1: role of reactive oxygen species.
    Ding M; Li JJ; Leonard SS; Ye JP; Shi X; Colburn NH; Castranova V; Vallyathan V
    Carcinogenesis; 1999 Apr; 20(4):663-8. PubMed ID: 10223197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP
    Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.
    Qin W; Wang Y; Fang G; Wu T; Liu C; Zhou D
    Chemosphere; 2016 May; 150():71-78. PubMed ID: 26891359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative damage and direct adducts in calf thymus DNA induced by the pentachlorophenol metabolites, tetrachlorohydroquinone and tetrachloro-1,4-benzoquinone.
    Lin PH; Nakamura J; Yamaguchi S; Upton PB; La DK; Swenberg JA
    Carcinogenesis; 2001 Apr; 22(4):627-34. PubMed ID: 11285199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.
    Gut I; Nedelcheva V; Soucek P; Stopka P; Tichavská B
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1211-8. PubMed ID: 9118895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of mannitol or catalase on the generation of reactive oxygen species leading to DNA damage by Chromium(VI) reduction with ascorbate.
    Tsou TC; Lai HJ; Yang JL
    Chem Res Toxicol; 1999 Oct; 12(10):1002-9. PubMed ID: 10525278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM; Kuppusamy P; Zweier JL; Yager JD
    Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide.
    Yamamoto K; Kawanishi S
    J Biol Chem; 1989 Sep; 264(26):15435-40. PubMed ID: 2549063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of active oxygen species in DNA damage by pentachlorophenol metabolites.
    Naito S; Ono Y; Somiya I; Inoue S; Ito K; Yamamoto K; Kawanishi S
    Mutat Res; 1994 Oct; 310(1):79-88. PubMed ID: 7523887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA damage induced by metabolites of o-phenylphenol in the presence of copper(II) ion.
    Inoue S; Yamamoto K; Kawanishi S
    Chem Res Toxicol; 1990; 3(2):144-9. PubMed ID: 2130942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.
    Yim MB; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species-induced DNA damage and its modification: a chemical investigation.
    Yu TW; Anderson D
    Mutat Res; 1997 Oct; 379(2):201-10. PubMed ID: 9357549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative DNA damage by a metabolite of carcinogenic and reproductive toxic nitrobenzene in the presence of NADH and Cu(II).
    Ohkuma Y; Kawanishi S
    Biochem Biophys Res Commun; 1999 Apr; 257(2):555-60. PubMed ID: 10198250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes.
    Ramos CL; Pou S; Britigan BE; Cohen MS; Rosen GM
    J Biol Chem; 1992 Apr; 267(12):8307-12. PubMed ID: 1314821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a.
    Hoebeke M; Schuitmaker HJ; Jannink LE; Dubbelman TM; Jakobs A; Van de Vorst A
    Photochem Photobiol; 1997 Oct; 66(4):502-8. PubMed ID: 9337622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.