These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7828221)

  • 1. Effects of N,N'-bisdimethyl-1,2-ethanediamine dichloride, a double-chain surfactant, on membrane-related functions in human erythrocytes.
    Fogt A; Hägerstrand H; Isomaa B
    Chem Biol Interact; 1995 Feb; 94(2):147-55. PubMed ID: 7828221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane.
    Isomaa B; Hägerstrand H
    Cell Biochem Funct; 1988 Jul; 6(3):183-90. PubMed ID: 2842083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dehydroabietic acid on the erythrocyte membrane.
    Toivola DM; Isomaa B
    Chem Biol Interact; 1991; 79(1):65-78. PubMed ID: 2060038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of surface-active alkyltrimethylammonium salts with the erythrocyte membrane.
    Isomaa B
    Biochem Pharmacol; 1979 Apr; 28(7):975-80. PubMed ID: 444289
    [No Abstract]   [Full Text] [Related]  

  • 5. Gemini (dimeric) surfactant perturbation of the human erythrocyte.
    Dubnicková M; Bobrowska-Hägerstrand M; Söderström T; Iglic A; Hägerstrand H
    Acta Biochim Pol; 2000; 47(3):651-60. PubMed ID: 11310967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants.
    Galembeck E; Alonso A; Meirelles NC
    Chem Biol Interact; 1998 May; 113(2):91-103. PubMed ID: 9717511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes.
    Isomaa B; Hägerstrand H; Paatero G; Engblom AC
    Biochim Biophys Acta; 1986 Sep; 860(3):510-24. PubMed ID: 3741865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of alkyl ammonium derivatives with red cells: hemolysis and sodium pump inhibition studies.
    Klein RA; Ellory JC
    J Membr Biol; 1980 Jul; 55(2):123-31. PubMed ID: 7411591
    [No Abstract]   [Full Text] [Related]  

  • 9. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity.
    Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E
    Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of double-chained cationic surfactants, dimethyldialkylammoniums, with erythrocyte membranes: stabilization of the cationic vesicles by phosphatidylcholines with unsaturated fatty acyl chains.
    Kitagawa S; Hiyama F; Kato M; Watanabe R
    J Pharm Pharmacol; 2002 Jun; 54(6):773-80. PubMed ID: 12078993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolysis and antihemolysis induced by amino acid-based surfactants.
    Sánchez L; Martínez V; Infante MR; Mitjans M; Vinardell MP
    Toxicol Lett; 2007 Mar; 169(2):177-84. PubMed ID: 17293064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Na+,K(+)-pump activity in erythrocytes of rabbits fed cholesterol.
    Makarov VL; Kuznetsov SR
    Int J Exp Pathol; 1995 Apr; 76(2):93-6. PubMed ID: 7786767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidative activity of some quaternary ammonium salts incorporated into erythrocyte membranes.
    Kleszczyńska H; Sarapuk J; Oświ cimska M; Witek S
    Z Naturforsch C J Biosci; 2000; 55(11-12):976-80. PubMed ID: 11204205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective Effect of Sundakai (Solanum torvum) Seed Protein (SP) Against Oxidative Membrane Damage in Human Erythrocytes.
    Sivapriya M; Gowda SS; Srinivas L
    J Membr Biol; 2015 Dec; 248(6):1137-44. PubMed ID: 26374653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes].
    Matskevich IuA; Kazennov AM
    Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ozone alteration of transport of cations and the Na+/K+-ATPase in human erythrocytes.
    Koontz AE; Heath RL
    Arch Biochem Biophys; 1979 Dec; 198(2):493-500. PubMed ID: 229772
    [No Abstract]   [Full Text] [Related]  

  • 17. Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP.
    Lee KH; Blostein R
    Nature; 1980 May; 285(5763):338-9. PubMed ID: 6246454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of diltiazem on the physicochemical properties of rat erythrocyte and liposome membrane: comparison with pentoxifylline and propranolol.
    Sasaki Y; Morita T; Takeyama S
    Jpn J Pharmacol; 1984 Apr; 34(4):417-27. PubMed ID: 6328086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume expansion of erythrocytes is not the only mechanism responsible for the protection by arginine-based surfactants against hypotonic hemolysis.
    Fait ME; Hermet M; Vazquez R; Mate S; Daza Millone MA; Vela ME; Morcelle SR; Bakas L
    Colloids Surf B Biointerfaces; 2018 Nov; 171():134-141. PubMed ID: 30025375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory Effect of Fluoride on Na+,K+ ATPase Activity in Human Erythrocyte Membrane.
    A S; G M
    Biol Trace Elem Res; 2015 Dec; 168(2):340-8. PubMed ID: 25957596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.