These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7828437)

  • 21. Metalloproteases and guidance of retinal axons in the developing visual system.
    Webber CA; Hocking JC; Yong VW; Stange CL; McFarlane S
    J Neurosci; 2002 Sep; 22(18):8091-100. PubMed ID: 12223563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engrailed, retinotectal targeting, and axonal patterning in the midbrain during Xenopus development: an antisense study.
    Rétaux S; McNeill L; Harris WA
    Neuron; 1996 Jan; 16(1):63-75. PubMed ID: 8562092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinotectal specificity: models and experiments in search of a mapping function.
    Fraser SE; Hunt RK
    Annu Rev Neurosci; 1980; 3():319-52. PubMed ID: 6998345
    [No Abstract]   [Full Text] [Related]  

  • 24. The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos.
    Dingwell KS; Holt CE; Harris WA
    J Neurobiol; 2000 Aug; 44(2):246-59. PubMed ID: 10934326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations in precision of the crossed retinotectal projection during chick development.
    McLoon SC
    Science; 1982 Mar; 215(4538):1418-20. PubMed ID: 7063855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo.
    Harris WA; Holt CE; Bonhoeffer F
    Development; 1987 Sep; 101(1):123-33. PubMed ID: 3449363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum.
    Halfter W; Schurer B
    J Comp Neurol; 1998 Jul; 397(1):105-17. PubMed ID: 9671282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphogenetic forces in the development of the avian retina of possible significance for the polarity of central visual projections [proceedings].
    Horder TJ; Mashkas A; Webb JN
    J Physiol; 1979 Jun; 291():12P-13P. PubMed ID: 480199
    [No Abstract]   [Full Text] [Related]  

  • 29. In vitro studies on neural specificity.
    Roth S
    Natl Cancer Inst Monogr; 1978 May; (48):343-5. PubMed ID: 748754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum.
    Liu Y; Berndt J; Su F; Tawarayama H; Shoji W; Kuwada JY; Halloran MC
    J Neurosci; 2004 Jan; 24(2):310-8. PubMed ID: 14724229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons.
    Rager G
    Proc R Soc Lond B Biol Sci; 1976 Feb; 192(1108):331-52. PubMed ID: 3794
    [No Abstract]   [Full Text] [Related]  

  • 32. Delayed innervation of the optic tectum during development in Xenopus laevis.
    Feldman JD; Gaze RM; Keating MJ
    Exp Brain Res; 1971; 14(1):16-23. PubMed ID: 5157533
    [No Abstract]   [Full Text] [Related]  

  • 33. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarity of structure and of ordered nerve connections in the developing amphibian brain.
    Chung SH; Cooke J
    Nature; 1975 Nov; 258(5531):126-32. PubMed ID: 1186890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development.
    Cohen-Cory S; Escandón E; Fraser SE
    Dev Biol; 1996 Oct; 179(1):102-15. PubMed ID: 8873757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinotopic organization of the developing retinotectal projection in the zebrafish embryo.
    Stuermer CA
    J Neurosci; 1988 Dec; 8(12):4513-30. PubMed ID: 2848935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus?
    Holt CE
    J Neurosci; 1984 Apr; 4(4):1130-52. PubMed ID: 6325604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal changes in embryonic nerve cell recognition: correlate with cholinergic development in aggregate cultures.
    Ramirez G; Seeds NW
    Dev Biol; 1977 Oct; 60(1):153-62. PubMed ID: 561721
    [No Abstract]   [Full Text] [Related]  

  • 40. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands.
    Mann F; Ray S; Harris W; Holt C
    Neuron; 2002 Aug; 35(3):461-73. PubMed ID: 12165469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.