These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 782918)
1. Reconfirmation of replacement of magnesium ion requirement by polyamines in isoleucyl-tRNA formation in Escherichia coli. Takeda Y; Ogiso Y FEBS Lett; 1976 Jul; 66(2):332-5. PubMed ID: 782918 [No Abstract] [Full Text] [Related]
2. Polyamine prevention of inhibition of rat liver isoleucyl-tRNA formation by poly(G), poly(I) or ribosomes. Igarashi K; Tanaka M; Eguchi K; Hirose S Biochem Biophys Res Commun; 1978 Jul; 83(1):274-80. PubMed ID: 358977 [No Abstract] [Full Text] [Related]
3. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+. Takeda Y; Onishi T J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of spermine stimulation of rat-liver isoleucyl-tRNA formation. Igarashi K; Eguchi K; Tanaka M; Hirose S Eur J Biochem; 1978 Sep; 90(1):13-9. PubMed ID: 710414 [TBL] [Abstract][Full Text] [Related]
5. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200 [TBL] [Abstract][Full Text] [Related]
6. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine. Santi DV; Webster RW J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187 [TBL] [Abstract][Full Text] [Related]
7. ATP-induced activation of the aminoacylation of tRNA by the isoleucyl-tRNA synthetase from Escherichia coli. Airas RK Eur J Biochem; 1988 Sep; 176(2):359-63. PubMed ID: 3046945 [TBL] [Abstract][Full Text] [Related]
8. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. Lõvgren TN; Heinonen J; Loftfield RB J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl transfer RNA formation. Binding of cations to transfer RNA and its role in aminoacyl transfer RNA formation. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):463-9. PubMed ID: 789364 [TBL] [Abstract][Full Text] [Related]
10. Effect of polyamines on isoleucyl-tRNA formation by rat-liver isoleucyl-tRNA synthetase. Igarashi K; Eguchi K; Tanaka M; Hirose S Eur J Biochem; 1978 Jan; 82(1):301-7. PubMed ID: 244419 [TBL] [Abstract][Full Text] [Related]
11. Direct determination of the enthalpy of binding of tRNAIle to isoleucyl-tRNA synthetase of E. coli MRE 600. Wiesinger H; Kula MR; Hinz HJ Hoppe Seylers Z Physiol Chem; 1980; 361(2):201-5. PubMed ID: 6987144 [No Abstract] [Full Text] [Related]
12. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12. Fersht AR; Kaethner MM Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of the transfer reaction of aminoacyl-tRNA synthetases by cations. Kim JJ; Mehler AH Arch Biochem Biophys; 1981 Jul; 209(2):465-70. PubMed ID: 7027957 [No Abstract] [Full Text] [Related]
14. Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA. Lam SS; Schimmel PR Biochemistry; 1975 Jun; 14(12):2775-80. PubMed ID: 238575 [TBL] [Abstract][Full Text] [Related]
15. On the binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Flossdorf J; Marutzky R; Messer K; Kula MR Nucleic Acids Res; 1977 Mar; 4(3):673-83. PubMed ID: 325520 [TBL] [Abstract][Full Text] [Related]
16. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Flossdorf J; Marutzky R; Kula MR Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742 [TBL] [Abstract][Full Text] [Related]
17. Necessity of polyamines for maximum isoleucyl-tRNA formation in a rat liver cell-free system. Igarashi K; Takahashi K; Hirose S Biochem Biophys Res Commun; 1974 Sep; 60(1):234-40. PubMed ID: 4424262 [No Abstract] [Full Text] [Related]
18. Isoleucyl-tRNA synthetase inactivation and the extent of aminoacylation of tRNAIle from Escherichia coli. Marashi F; Harris CL Biochim Biophys Acta; 1977 Jul; 477(1):84-8. PubMed ID: 328047 [TBL] [Abstract][Full Text] [Related]
19. A stereochemical and positional isotope exchange study of the mechanism of activation of isoleucine by isoleucyl-tRNA synthetase from Escherichia coli. Lowe G; Sproat BS; Tansley G; Cullis PM Biochemistry; 1983 Mar; 22(5):1229-36. PubMed ID: 6340735 [TBL] [Abstract][Full Text] [Related]
20. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs. Freist W; Sternbach H; Cramer F Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]