These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 7829548)
1. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. Santerre JP; Labow RS; Duguay DG; Erfle D; Adams GA J Biomed Mater Res; 1994 Oct; 28(10):1187-99. PubMed ID: 7829548 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes. Santerre JP; Labow RS; Adams GA J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004 [TBL] [Abstract][Full Text] [Related]
3. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. Tang YW; Labow RS; Santerre JP J Biomed Mater Res; 2001 Dec; 57(4):597-611. PubMed ID: 11553891 [TBL] [Abstract][Full Text] [Related]
4. Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. Schubert MA; Wiggins MJ; Schaefer MP; Hiltner A; Anderson JM J Biomed Mater Res; 1995 Mar; 29(3):337-47. PubMed ID: 7542244 [TBL] [Abstract][Full Text] [Related]
5. The influence of resin chemistry on a dental composite's biodegradation. Finer Y; Santerre JP J Biomed Mater Res A; 2004 May; 69(2):233-46. PubMed ID: 15057996 [TBL] [Abstract][Full Text] [Related]
6. The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase. Santerre JP; Labow RS J Biomed Mater Res; 1997 Aug; 36(2):223-32. PubMed ID: 9261684 [TBL] [Abstract][Full Text] [Related]
7. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products. Wang GB; Labow RS; Santerre JP J Biomed Mater Res; 1997 Sep; 36(3):407-17. PubMed ID: 9260112 [TBL] [Abstract][Full Text] [Related]
9. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
10. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate). Chen Z; Cheng S; Xu K Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751 [TBL] [Abstract][Full Text] [Related]
11. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Loh XJ; Tan KK; Li X; Li J Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807 [TBL] [Abstract][Full Text] [Related]
12. Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes. Tang YW; Labow RS; Revenko I; Santerre JP J Biomater Sci Polym Ed; 2002; 13(4):463-83. PubMed ID: 12160304 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. Tang YW; Labow RS; Santerre JP J Biomed Mater Res; 2001 Sep; 56(4):516-28. PubMed ID: 11400129 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the structure of polyurethanes for bone tissue engineering applications. Bil M; Ryszkowska J; Woźniak P; Kurzydłowski KJ; Lewandowska-Szumieł M Acta Biomater; 2010 Jul; 6(7):2501-10. PubMed ID: 19723595 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: a novel bilayered surface structure. Xie X; Tan H; Li J; Zhong Y J Biomed Mater Res A; 2008 Jan; 84(1):30-43. PubMed ID: 17600322 [TBL] [Abstract][Full Text] [Related]
17. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups. Ding M; Li J; Fu X; Zhou J; Tan H; Gu Q; Fu Q Biomacromolecules; 2009 Oct; 10(10):2857-65. PubMed ID: 19817491 [TBL] [Abstract][Full Text] [Related]
19. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
20. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]