These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 7829548)

  • 21. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations.
    Christenson EM; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure.
    Hernandez R; Weksler J; Padsalgikar A; Runt J
    J Biomed Mater Res A; 2008 Nov; 87(2):546-56. PubMed ID: 18186070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q
    Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s.
    Labow RS; Tang Y; McCloskey CB; Santerre JP
    J Biomater Sci Polym Ed; 2002; 13(6):651-65. PubMed ID: 12182550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable degradation product migration from cross-linked biomedical polyester-ethers through predetermined alterations in copolymer composition.
    Höglund A; Odelius K; Hakkarainen M; Albertsson AC
    Biomacromolecules; 2007 Jun; 8(6):2025-32. PubMed ID: 17521165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of phospholipids on the biodegradation of polyurethanes by lysosomal enzymes.
    Labow RS; Santerre JP; Waghray G
    J Biomater Sci Polym Ed; 1997; 8(10):779-95. PubMed ID: 9297603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase.
    Christenson EM; Patel S; Anderson JM; Hiltner A
    Biomaterials; 2006 Jul; 27(21):3920-6. PubMed ID: 16600363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro exposure of a novel polyesterurethane graft to enzymes: a study of the biostability of the Vascugraft arterial prosthesis.
    Zhang Z; King M; Guidoin R; Therrien M; Doillon C; Diehl-Jones WL; Huebner E
    Biomaterials; 1994 Nov; 15(14):1129-44. PubMed ID: 7893915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical stability of polyether urethanes versus polycarbonate urethanes.
    Tanzi MC; Mantovani D; Petrini P; Guidoin R; Laroche G
    J Biomed Mater Res; 1997 Sep; 36(4):550-9. PubMed ID: 9294772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading.
    Wiggins MJ; MacEwan M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of soft segment structure on the fatigue crack propagation of model polyurethanes.
    Kim HJ; Benson RS
    Biomed Mater Eng; 1994; 4(3):171-85. PubMed ID: 7950866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.
    Christenson EM; Dadsetan M; Hiltner A
    J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrophil-mediated degradation of segmented polyurethanes.
    Labow RS; Erfle DJ; Santerre JP
    Biomaterials; 1995 Jan; 16(1):51-9. PubMed ID: 7718693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 May; 24(12):2003-11. PubMed ID: 12628819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.