These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. Effects on cytosolic calcium release and superoxide production. Sehgal G; Zhang K; Todd RF; Boxer LA; Petty HR J Immunol; 1993 May; 150(10):4571-80. PubMed ID: 8097757 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of oxidative metabolism in murine polymorphonuclear leukocytes by unopsonized fungal cells: evidence for a mannose-specific mechanism. Danley DL; Hilger AE J Immunol; 1981 Aug; 127(2):551-6. PubMed ID: 7019326 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives. Schmid E; Figala V; Ullrich V Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099 [TBL] [Abstract][Full Text] [Related]
6. Chloroquine and hydroxychloroquine inhibit multiple sites in metabolic pathways leading to neutrophil superoxide release. Hurst NP; French JK; Gorjatschko L; Betts WH J Rheumatol; 1988 Jan; 15(1):23-7. PubMed ID: 2832600 [TBL] [Abstract][Full Text] [Related]
7. The stimulation of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils by phorbol myristate acetate, opsonized zymosan and IgG2-containing soluble immune complexes. Baxter MA; Leslie RG; Reeves WG Immunology; 1983 Apr; 48(4):657-65. PubMed ID: 6299935 [TBL] [Abstract][Full Text] [Related]
8. Microplate reader assay for measurement of opsonized zymosan-stimulated superoxide anion production by neutrophils. Carey LA; Schuhl RA; Gee MH Biotechniques; 1995 Nov; 19(5):824-9. PubMed ID: 8588923 [TBL] [Abstract][Full Text] [Related]
9. Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. Cao D; Mizukami IF; Garni-Wagner BA; Kindzelskii AL; Todd RF; Boxer LA; Petty HR J Immunol; 1995 Feb; 154(4):1817-29. PubMed ID: 7836767 [TBL] [Abstract][Full Text] [Related]
10. Optical microscopy of antibody-dependent phagocytosis and lysis of erythrocytes by living normal and chronic granulomatous disease neutrophils: a role of superoxide anions in extra- and intra-cellular lysis. Francis JW; Boxer LA; Petty HR J Cell Physiol; 1988 Apr; 135(1):1-12. PubMed ID: 2835377 [TBL] [Abstract][Full Text] [Related]
11. Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Suda T; Suzuki Y; Matsui T; Inoue T; Niide O; Yoshimaru T; Suzuki H; Ra C; Ochiai T Br J Dermatol; 2005 May; 152(5):887-95. PubMed ID: 15888142 [TBL] [Abstract][Full Text] [Related]
12. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. Xia Y; Vetvicka V; Yan J; Hanikýrová M; Mayadas T; Ross GD J Immunol; 1999 Feb; 162(4):2281-90. PubMed ID: 9973505 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). Thornton BP; Vĕtvicka V; Pitman M; Goldman RC; Ross GD J Immunol; 1996 Feb; 156(3):1235-46. PubMed ID: 8558003 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of human neutrophil chemiluminescence by soluble immune complexes and antibodies to neutrophils. Starkebaum G; Stevens DL; Henry C; Gavin SE J Lab Clin Med; 1981 Aug; 98(2):280-91. PubMed ID: 6972984 [TBL] [Abstract][Full Text] [Related]
15. Effect of C1q on the processing of immune complexes by human neutrophils. Ohkuro M; Kobayashi K; Takahashi K; Nagasawa S Immunology; 1994 Nov; 83(3):507-11. PubMed ID: 7835978 [TBL] [Abstract][Full Text] [Related]
16. Superoxide anion production and phospholipase D-mediated generation of diacylglycerol are subnormal after N-formyl-methionyl-leucyl-phenylalanine stimulation of polymorphonuclear granulocytes in polycythemia vera. Samuelsson J; Hansson A; Rosendahl K; Palmblad J J Lab Clin Med; 1993 Feb; 121(2):310-9. PubMed ID: 8381848 [TBL] [Abstract][Full Text] [Related]
17. Effect of endothelins on human neutrophil activation by immune complexes. Paulino EC; Steil AA; Jancar S Int Immunopharmacol; 2006 Jul; 6(7):1119-25. PubMed ID: 16714215 [TBL] [Abstract][Full Text] [Related]
18. Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release. Kitagawa S; Yuo A; Yagisawa M; Azuma E; Yoshida M; Furukawa Y; Takahashi M; Masuyama J; Takaku F Exp Hematol; 1996 Mar; 24(4):559-67. PubMed ID: 8608807 [TBL] [Abstract][Full Text] [Related]
19. Changes in the ratio between FPR and FPRL1 triggered superoxide production in human neutrophils-a tool in analysing receptor specific events. Fu H; Karlsson J; Björkman L; Stenfeldt AL; Karlsson A; Bylund J; Dahlgren C J Immunol Methods; 2008 Feb; 331(1-2):50-8. PubMed ID: 18166194 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous calcium-dependent delivery of neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting granule-dependent triggering of superoxide deposition. Maher RJ; Cao D; Boxer LA; Petty HR J Cell Physiol; 1993 Aug; 156(2):226-34. PubMed ID: 8393877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]