BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7830050)

  • 1. L-dopa inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells.
    Pardo B; Mena MA; de Yébenes JG
    J Neurochem; 1995 Feb; 64(2):576-82. PubMed ID: 7830050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-DOPA and glia-conditioned medium have additive effects on tyrosine hydroxylase expression in human catecholamine-rich neuroblastoma NB69 cells.
    Rodríguez-Martín E; Canals S; Casarejos MJ; de Bernardo S; Handler A; Mena MA
    J Neurochem; 2001 Aug; 78(3):535-45. PubMed ID: 11483656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line.
    Pardo B; Mena MA; Fahn S; García de Yébenes J
    Mov Disord; 1993 Jul; 8(3):278-84. PubMed ID: 8341291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPP(+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport.
    Desai VG; Feuers RJ; Hart RW; Ali SF
    Brain Res; 1996 Apr; 715(1-2):1-8. PubMed ID: 8739616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotoxicity of levodopa on catecholamine-rich neurons.
    Mena MA; Pardo B; Casarejos MJ; Fahn S; García de Yébenes J
    Mov Disord; 1992; 7(1):23-31. PubMed ID: 1557063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH.
    Seitz G; Gebhardt S; Beck JF; Böhm W; Lode HN; Niethammer D; Bruchelt G
    Neurosci Lett; 1998 Mar; 244(1):33-6. PubMed ID: 9578138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors.
    Lai CT; Yu PH
    Biochem Pharmacol; 1997 Feb; 53(3):363-72. PubMed ID: 9065740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA; Soliman KF
    Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of the complexes of the electron transport chain in synaptic mitochondria from rat brain.
    Almeida A; Brooks KJ; Sammut I; Keelan J; Davey GP; Clark JB; Bates TE
    Dev Neurosci; 1995; 17(4):212-8. PubMed ID: 8575340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease.
    Khan FH; Sen T; Maiti AK; Jana S; Chatterjee U; Chakrabarti S
    Biochim Biophys Acta; 2005 Jun; 1741(1-2):65-74. PubMed ID: 15925494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity.
    Przedborski S; Jackson-Lewis V; Muthane U; Jiang H; Ferreira M; Naini AB; Fahn S
    Ann Neurol; 1993 Nov; 34(5):715-23. PubMed ID: 8239566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine.
    Pedrosa R; Soares-da-Silva P
    Br J Pharmacol; 2002 Dec; 137(8):1305-13. PubMed ID: 12466240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of aging on mitochondrial respiratory chain enzymes in cultured human fibroblasts treated with ascorbate.
    Sharma P; Rupar CA; Rip JW
    Gerontology; 1998; 44(2):78-84. PubMed ID: 9523218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-dopa does not affect electron transfer chain enzymes and respiration of rat muscle mitochondria.
    Dagani F; Ferrari R; Anderson JJ; Chase TN
    Mov Disord; 1991; 6(4):315-9. PubMed ID: 1661844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiparkinsonian therapies and brain mitochondrial complex I activity.
    Przedborski S; Jackson-Lewis V; Fahn S
    Mov Disord; 1995 May; 10(3):312-7. PubMed ID: 7651449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional implications of the noradrenergic-cholinergic switch induced by retinoic acid in NB69 neuroblastoma cells.
    Handler A; Lobo MD; Alonso FJ; Paíno CL; Mena MA
    J Neurosci Res; 2000 May; 60(3):311-20. PubMed ID: 10797533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of catalase in mesencephalic cultures by L-DOPA and dopamine.
    Han SK; Cohen G
    Neurochem Int; 1996 Dec; 29(6):645-9. PubMed ID: 9113132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of conventional and sustained delivery of levodopa on SH-SY5Y neuroblastoma cells.
    Martin TM; Benghuzzi H; Tucci M
    Biomed Sci Instrum; 2005; 41():382-7. PubMed ID: 15850136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of L-dopa and carbidopa combined treatments on human catecholaminergic cells.
    Colamartino M; Padua L; Meneghini C; Leone S; Cornetta T; Testa A; Cozzi R
    DNA Cell Biol; 2012 Nov; 31(11):1572-9. PubMed ID: 23020119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.