These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 7830602)

  • 1. Nuclear magnetic resonance studies of protein-peptide complexes.
    Wand AJ; Short JH
    Methods Enzymol; 1994; 239():700-17. PubMed ID: 7830602
    [No Abstract]   [Full Text] [Related]  

  • 2. The main chain dynamics of a peptide bound to calmodulin.
    Chen C; Feng Y; Short JH; Wand AJ
    Arch Biochem Biophys; 1993 Nov; 306(2):510-4. PubMed ID: 8215455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution.
    Ikura M; Kay LE; Bax A
    J Biomol NMR; 1991 Sep; 1(3):299-304. PubMed ID: 1841700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the calmodulin-peptide complex based on the troponin C crystal packing and its similarity to the NMR structure of the calmodulin-myosin light chain kinase peptide complex.
    Sekharudu CY; Sundaralingam M
    Protein Sci; 1993 Apr; 2(4):620-5. PubMed ID: 8518733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of homo- and heteronuclear J couplings from quantitative J correlation.
    Bax A; Vuister GW; Grzesiek S; Delaglio F; Wang AC; Tschudin R; Zhu G
    Methods Enzymol; 1994; 239():79-105. PubMed ID: 7830604
    [No Abstract]   [Full Text] [Related]  

  • 6. The energetics and dynamics of molecular recognition by calmodulin.
    Ehrhardt MR; Urbauer JL; Wand AJ
    Biochemistry; 1995 Mar; 34(9):2731-8. PubMed ID: 7893684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance methods for studying protein-ligand complexes.
    Petros AM; Fesik SW
    Methods Enzymol; 1994; 239():717-39. PubMed ID: 7530321
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.
    Findlay WA; Gradwell MJ; Bayley PM
    Protein Sci; 1995 Nov; 4(11):2375-82. PubMed ID: 8563635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
    Ohki S; Ikura M; Zhang M
    Biochemistry; 1997 Apr; 36(14):4309-16. PubMed ID: 9100027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex.
    Lee AL; Kinnear SA; Wand AJ
    Nat Struct Biol; 2000 Jan; 7(1):72-7. PubMed ID: 10625431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy.
    Frederick KK; Kranz JK; Wand AJ
    Biochemistry; 2006 Aug; 45(32):9841-8. PubMed ID: 16893184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational requirements for Ca(2+)/calmodulin binding and activation of myosin light chain kinase.
    Padre RC; Stull JT
    FEBS Lett; 2000 Apr; 472(1):148-52. PubMed ID: 10781823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic delineation of a calmodulin peptide interaction.
    Hultschig C; Hecht HJ; Frank R
    J Mol Biol; 2004 Oct; 343(3):559-68. PubMed ID: 15465045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ATCUN domain as a probe of intermolecular interactions: application to calmodulin-peptide complexes.
    Mal TK; Ikura M; Kay LE
    J Am Chem Soc; 2002 Nov; 124(47):14002-3. PubMed ID: 12440892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins.
    Bax A; Ikura M
    J Biomol NMR; 1991 May; 1(1):99-104. PubMed ID: 1668719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of calmodulin-peptide interactions by NMR spectroscopy.
    Klevit RE
    Methods Enzymol; 1987; 139():197-206. PubMed ID: 3587023
    [No Abstract]   [Full Text] [Related]  

  • 18. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase.
    Trewhella J; Blumenthal DK; Rokop SE; Seeger PA
    Biochemistry; 1990 Oct; 29(40):9316-24. PubMed ID: 2248948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides.
    Findlay WA; Martin SR; Beckingham K; Bayley PM
    Biochemistry; 1995 Feb; 34(7):2087-94. PubMed ID: 7857920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide.
    Green DF; Dennis AT; Fam PS; Tidor B; Jasanoff A
    Biochemistry; 2006 Oct; 45(41):12547-59. PubMed ID: 17029410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.