BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7830617)

  • 1. Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus.
    Dahl C; Speich N; Trüper HG
    Methods Enzymol; 1994; 243():331-49. PubMed ID: 7830617
    [No Abstract]   [Full Text] [Related]  

  • 2. Sulfite reductase and APS reductase from Archaeoglobus fulgidus.
    Dahl C; Trüper HG
    Methods Enzymol; 2001; 331():427-41. PubMed ID: 11265481
    [No Abstract]   [Full Text] [Related]  

  • 3. Dissimilatory ATP sulfurylase from Archaeoglobus fulgidus.
    Sperling D; Kappler U; Trüper HG; Dahl C
    Methods Enzymol; 2001; 331():419-27. PubMed ID: 11265480
    [No Abstract]   [Full Text] [Related]  

  • 4. Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes.
    Dahl C; Kredich NM; Deutzmann R; Trüper HG
    J Gen Microbiol; 1993 Aug; 139(8):1817-28. PubMed ID: 7691984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desulfofuscidin: dissimilatory, high-spin sulfite reductase of thermophilic, sulfate-reducing bacteria.
    Hatchikian EC
    Methods Enzymol; 1994; 243():276-95. PubMed ID: 7830616
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins.
    Speich N; Dahl C; Heisig P; Klein A; Lottspeich F; Stetter KO; Trüper HG
    Microbiology (Reading); 1994 Jun; 140 ( Pt 6)():1273-84. PubMed ID: 8081492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymology and molecular biology of prokaryotic sulfite oxidation.
    Kappler U; Dahl C
    FEMS Microbiol Lett; 2001 Sep; 203(1):1-9. PubMed ID: 11557133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus.
    Lampreia J; Fauque G; Speich N; Dahl C; Moura I; Trüper HG; Moura JJ
    Biochem Biophys Res Commun; 1991 Nov; 181(1):342-7. PubMed ID: 1659811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.
    Basen M; Krüger M; Milucka J; Kuever J; Kahnt J; Grundmann O; Meyerdierks A; Widdel F; Shima S
    Environ Microbiol; 2011 May; 13(5):1370-9. PubMed ID: 21392199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences.
    Larsen O; Lien T; Birkeland NK
    Extremophiles; 1999 Jan; 3(1):63-70. PubMed ID: 10086846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes.
    Hipp WM; Pott AS; Thum-Schmitz N; Faath I; Dahl C; Trüper HG
    Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():2891-2902. PubMed ID: 9308173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siroheme-sulfite reductase-type protein from Pyrobaculum islandicum.
    Dahl C; Molitor M; Trüper HG
    Methods Enzymol; 2001; 331():410-9. PubMed ID: 11265479
    [No Abstract]   [Full Text] [Related]  

  • 13. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase.
    Heiss S; Schäfer HJ; Haag-Kerwer A; Rausch T
    Plant Mol Biol; 1999 Mar; 39(4):847-57. PubMed ID: 10350097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved purification of the membrane-bound hydrogenase-sulfur-reductase complex from thermophilic archaea using epsilon-aminocaproic acid-containing chromatography buffers.
    Laska S; Kletzin A
    J Chromatogr B Biomed Sci Appl; 2000 Jan; 737(1-2):151-60. PubMed ID: 10681051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiosulfate reductase.
    Chauncey TR; Uhteg LC; Westley J
    Methods Enzymol; 1987; 143():350-4. PubMed ID: 3309558
    [No Abstract]   [Full Text] [Related]  

  • 16. Thioltransferase from human placenta.
    Larson K; Eriksson V; Mannervik B
    Methods Enzymol; 1985; 113():520-4. PubMed ID: 3003509
    [No Abstract]   [Full Text] [Related]  

  • 17. N5,N10-methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri.
    Klein AR; Breitung J; Linder D; Stetter KO; Thauer RK
    Arch Microbiol; 1993; 159(3):213-9. PubMed ID: 8481088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway.
    Neumann S; Wynen A; Trüper HG; Dahl C
    Mol Biol Rep; 2000 Mar; 27(1):27-33. PubMed ID: 10939523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea.
    Schwörer B; Breitung J; Klein AR; Stetter KO; Thauer RK
    Arch Microbiol; 1993; 159(3):225-32. PubMed ID: 8481089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prephenate dehydrogenase (monofunctional).
    Fischer R; Jensen R
    Methods Enzymol; 1987; 142():503-7. PubMed ID: 3037266
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.