These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 7831782)
21. Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana. Fujisaki K; Hagihara F; Kaido M; Mise K; Okuno T Arch Virol; 2003 Jan; 148(1):165-75. PubMed ID: 12536302 [TBL] [Abstract][Full Text] [Related]
22. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Allison RF; Janda M; Ahlquist P Virology; 1989 Sep; 172(1):321-30. PubMed ID: 2773323 [TBL] [Abstract][Full Text] [Related]
23. Coat protein-independent cell-to-cell movement of bromoviruses expressing brome mosaic virus movement protein with an adaptation-related amino acid change in the central region. Sasaki N; Kaido M; Okuno T; Mise K Arch Virol; 2005 Jun; 150(6):1231-40. PubMed ID: 15906103 [TBL] [Abstract][Full Text] [Related]
24. A novel set of polyvalent primers that detect members of the genera Bromovirus and Cucumovirus. Seo JK; Lee YJ; Kim MK; Lee SH; Kim KH; Choi HS J Virol Methods; 2014 Jul; 203():112-5. PubMed ID: 24717165 [TBL] [Abstract][Full Text] [Related]
25. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea. Quan S; Nelson RS; Deom CM Arch Virol; 2008; 153(8):1505-16. PubMed ID: 18604602 [TBL] [Abstract][Full Text] [Related]
26. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Allison R; Thompson C; Ahlquist P Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1820-4. PubMed ID: 2308940 [TBL] [Abstract][Full Text] [Related]
27. Effect of C-terminal deletions in the movement protein of cowpea chlorotic mottle virus on cell-to-cell and long-distance movement. Osman F; Schmitz I; Rao AL J Gen Virol; 1999 Jun; 80 ( Pt 6)():1357-1365. PubMed ID: 10374951 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of infectious in vitro transcripts from Cassia yellow blotch bromovirus cDNA clones and a reassortment analysis with other bromoviruses in protoplasts. Iwahashi F; Fujisaki K; Kaido M; Okuno T; Mise K Arch Virol; 2005 Jul; 150(7):1301-14. PubMed ID: 15770356 [TBL] [Abstract][Full Text] [Related]
29. The movement protein gene is involved in the virus-specific requirement of the coat protein in cell-to-cell movement of bromoviruses. Sasaki N; Arimoto M; Nagano H; Mori M; Kaido M; Mise K; Okuno T Arch Virol; 2003 Apr; 148(4):803-12. PubMed ID: 12664302 [TBL] [Abstract][Full Text] [Related]
30. Double infection of tobacco protoplasts with brome mosaic virus and cowpea chlorotic mottle virus. Watts JW; Dawson JR Virology; 1980 Sep; 105(2):501-7. PubMed ID: 18631680 [TBL] [Abstract][Full Text] [Related]
31. Dispensability of 3' tRNA-like sequence for packaging cowpea chlorotic mottle virus genomic RNAs. Annamalai P; Rao AL Virology; 2005 Feb; 332(2):650-8. PubMed ID: 15680430 [TBL] [Abstract][Full Text] [Related]
32. The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement. Schneider WL; Greene AE; Allison RF J Virol; 1997 Jun; 71(6):4862-5. PubMed ID: 9151887 [TBL] [Abstract][Full Text] [Related]
34. Deletions in the 3' untranslated region of cowpea chlorotic mottle virus transgene reduce recovery of recombinant viruses in transgenic plants. Greene AE; Allison RF Virology; 1996 Nov; 225(1):231-4. PubMed ID: 8918552 [TBL] [Abstract][Full Text] [Related]
35. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Kaido M; Inoue Y; Takeda Y; Sugiyama K; Takeda A; Mori M; Tamai A; Meshi T; Okuno T; Mise K Mol Plant Microbe Interact; 2007 Jun; 20(6):671-81. PubMed ID: 17555275 [TBL] [Abstract][Full Text] [Related]
36. Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. Kasteel DT; van der Wel NN; Jansen KA; Goldbach RW; van Lent JW J Gen Virol; 1997 Aug; 78 ( Pt 8)():2089-93. PubMed ID: 9267012 [TBL] [Abstract][Full Text] [Related]
37. cis-acting elements required for efficient packaging of brome mosaic virus RNA3 in barley protoplasts. Damayanti TA; Tsukaguchi S; Mise K; Okuno T J Virol; 2003 Sep; 77(18):9979-86. PubMed ID: 12941908 [TBL] [Abstract][Full Text] [Related]
38. Molecular characterization of the complete genomes of two new field isolates of Cowpea chlorotic mottle virus, and their phylogenetic analysis. Ali A; Shafiekhani M; Olsen J Virus Genes; 2011 Aug; 43(1):120-9. PubMed ID: 21537997 [TBL] [Abstract][Full Text] [Related]
39. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. Sivakumaran K; Choi SK; Hema M; Kao CC J Virol; 2004 Jun; 78(12):6091-101. PubMed ID: 15163702 [TBL] [Abstract][Full Text] [Related]
40. Binding of cowpea chlorotic mottle virus to cowpea protoplasts and relation of binding to virus entry and infection. Roenhorst JW; van Lent JW; Verduin BJ Virology; 1988 May; 164(1):91-8. PubMed ID: 3363871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]