BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7831837)

  • 21. The neuraminidases of the virulent and avirulent A/Chicken/Pennsylvania/83 (H5N2) influenza A viruses: sequence and antigenic analyses.
    Deshpande KL; Naeve CW; Webster RG
    Virology; 1985 Nov; 147(1):49-60. PubMed ID: 2414922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential.
    Senne DA; Panigrahy B; Kawaoka Y; Pearson JE; Süss J; Lipkind M; Kida H; Webster RG
    Avian Dis; 1996; 40(2):425-37. PubMed ID: 8790895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus.
    Philpott M; Hioe C; Sheerar M; Hinshaw VS
    J Virol; 1990 Jun; 64(6):2941-7. PubMed ID: 2335822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens.
    Banbura MW; Kawaoka Y; Thomas TL; Webster RG
    Virology; 1991 Sep; 184(1):469-71. PubMed ID: 1871981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence of a potentially pathogenic H5N2 influenza virus in chickens.
    Saito T; Horimoto T; Kawaoka Y; Senne DA; Webster RG
    Virology; 1994 Jun; 201(2):277-84. PubMed ID: 8184538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics.
    Lu B; Zhou H; Ye D; Kemble G; Jin H
    J Virol; 2005 Jun; 79(11):6763-71. PubMed ID: 15890915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additional glycosylation at the receptor binding site of the hemagglutinin (HA) for H5 and H7 viruses may be an adaptation to poultry hosts, but does it influence pathogenicity?
    Banks J; Plowright L
    Avian Dis; 2003; 47(3 Suppl):942-50. PubMed ID: 14575092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature.
    Bean WJ; Kawaoka Y; Wood JM; Pearson JE; Webster RG
    J Virol; 1985 Apr; 54(1):151-60. PubMed ID: 3973976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus.
    Walker JA; Kawaoka Y
    J Gen Virol; 1993 Feb; 74 ( Pt 2)():311-4. PubMed ID: 8429306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells.
    Katz JM; Webster RG
    J Gen Virol; 1992 May; 73 ( Pt 5)():1159-65. PubMed ID: 1588320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia.
    Guo YJ; Krauss S; Senne DA; Mo IP; Lo KS; Xiong XP; Norwood M; Shortridge KF; Webster RG; Guan Y
    Virology; 2000 Feb; 267(2):279-88. PubMed ID: 10662623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics.
    Lee CW; Lee YJ; Senne DA; Suarez DL
    Virology; 2006 Sep; 353(2):388-95. PubMed ID: 16828833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes in its hemagglutinin during the adaptation of the influenza virus to mice and their role in the acquisition of virulent properties and resistance to serum inhibitors].
    Shilov AA; Sinitsyn BV
    Vopr Virusol; 1994; 39(4):153-7. PubMed ID: 7998391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced increase in virulence of low virulence highly [corrected] pathogenic avian influenza by serial intracerebral passage in chickens.
    Löndt BZ; Banks J; Gardner R; Cox WJ; Brown IH
    Avian Dis; 2007 Mar; 51(1 Suppl):396-400. PubMed ID: 17494593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes.
    Li SQ; Orlich M; Rott R
    J Virol; 1990 Jul; 64(7):3297-303. PubMed ID: 2191148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Genetic characterization of an avian influenza A (H5N1) virus isolated from a sick goose in China].
    Guo Y; Xu X; Wan X
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 1998 Dec; 12(4):322-5. PubMed ID: 12526344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens.
    Hulse DJ; Webster RG; Russell RJ; Perez DR
    J Virol; 2004 Sep; 78(18):9954-64. PubMed ID: 15331729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence diversity and associated pathogenicity of the hemagglutinin cleavage site of H5N2 avian influenza viruses isolated from chickens in Taiwan during 2013-2015.
    Li KP; Chang PC; Cheng MC; Tan DH; Chen LH; Liu YP; Lin YJ; Tsai HJ; Shien JH
    J Vet Med Sci; 2017 Jan; 79(1):108-114. PubMed ID: 27725416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses: role of passerine birds in maintenance or transmission?
    Nestorowicz A; Kawaoka Y; Bean WJ; Webster RG
    Virology; 1987 Oct; 160(2):411-8. PubMed ID: 3660587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational changes in the hemagglutinin of equine H3 influenza viruses result in the introduction of a glycosylation site which enhances the infectivity of the viruses.
    Adeyefa CA; McCauley JW; Tomori O
    Folia Microbiol (Praha); 1997; 42(4):390-4. PubMed ID: 9449785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.